A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

ENGENHARIA ECONÔMICA E ANALISE MULTICRITERIAL Francisco José Kliemann Neto, Dr. Programa de Pós-Graduação em Engenharia de Produção.

Apresentações semelhantes


Apresentação em tema: "ENGENHARIA ECONÔMICA E ANALISE MULTICRITERIAL Francisco José Kliemann Neto, Dr. Programa de Pós-Graduação em Engenharia de Produção."— Transcrição da apresentação:

1 ENGENHARIA ECONÔMICA E ANALISE MULTICRITERIAL Francisco José Kliemann Neto, Dr. Programa de Pós-Graduação em Engenharia de Produção – PPGEP Universidade Federal do Rio Grande do Sul - UFRGS 1

2 Fatores de Produção: Fatores de Remuneração: Trabalho Salário Terra Aluguel Capital Não considerar o efeito dos juros em uma análise pode levar o decisor a cometer erros representativos e a tomar decisões inadequadas! JUROS E TAXA DE JUROS Juros 2

3 JUROS E TAXA DE JUROS Uma soma de dinheiro pode ser equivalente a outra, diferente, mas num ponto diferente no tempo. O que proporciona a equivalência é o dinheiro pago pelo uso do dinheiro: os JUROS. Enfim, o juro é quem cria o valor do dinheiro no tempo! O juro deve-se, entre outros fatores de menor importância, a: Oportunidade; Inflação; Risco. 3

4 JUROS E TAXA DE JUROS Um real recebido hoje não será equivalente a um real recebido dentro de t anos Conceito de Juros: Pagamento pela oportunidade de dispor de um capital em determinado período do tempo; Custo do capital ou custo do dinheiro. 4

5 JUROS E TAXA DE JUROS Modalidades de Juros: Simples: São aqueles onde somente o capital renderá juros, ou seja, os juros irão ser diretamente proporcionais ao capital requerido. onde: Principal Taxa de Juros Número de períodos de juros 5

6 JUROS E TAXA DE JUROS Exemplo didático: Uma empresa toma emprestados $ ,00 a uma taxa de juros simples de 5% ao mês. Quanto ela deverá pagar ao final de 6 meses? J = x 0,05 x 6 J = 3.000,00 A empresa deve pagar 13 mil reais pelo empréstimo feito, sendo que serão somente referente aos juros do período do empréstimo. 6

7 JUROS E TAXA DE JUROS Modalidades de Juros: Compostos: Irão incorporar ao capital os próprios rendimentos dos juros do período anterior. Desta forma, quando compostos, os juros também irão render juros (são os juros sobre juros). onde: Principal Taxa de Juros Número de períodos de juros 7

8 JUROS E TAXA DE JUROS Exemplo didático anterior: Uma empresa toma emprestados $ ,00 a uma taxa de juros compostos de 5% ao mês. Quanto ela deverá pagar ao final de 6 meses? J = x (1+0,05) 6 – J = 3.400,96 A empresa deve pagar ,96 pelo empréstimo feito, sendo que 3.400,96 serão referentes aos juros do período do empréstimo. 8

9 JUROS E TAXA DE JUROS Comportamento destes juros, quando solicitado um capital P = 100,00 reais, a uma taxa de juros i = 10% ao ano, por um período n = 10 anos: 9

10 JUROS E TAXA DE JUROS NOMINAL Ocorre quando o período referido na taxa de juros (aplicação) não é igual ao período de capitalização. Exemplo: 60% a.a. com capitalização mensal EFETIVA Ocorre quando os períodos de capitalização coincidem com a taxa de juros. Exemplo: 5% a.m. A matemática financeira baseia-se em taxas de juros efetivas. Sendo assim, as taxas nominais devem ser convertidas em taxas efetivas! 10

11 JUROS E TAXA DE JUROS Conversão de taxas de juros de mesmo período de capitalização: Para converter uma taxa de juros nominal em taxa de juros efetiva de mesmo período de capitalização, faz-se: onde: taxa de juros efetiva taxa de juros nominal número de períodos de composição da taxa de juros, isto é, número de vezes que a taxa nominal é capitalizada 11

12 JUROS E TAXA DE JUROS Conversão de taxas de juros de mesmo período de capitalização: Para converter uma taxa de juros nominal em taxa de juros efetiva de mesmo período de capitalização, faz-se: Exemplo: 20% a.a. c.m determinar taxa efetiva mensal 20% a.a. c.m = 1,67% a.m. c.m 12

13 JUROS E TAXA DE JUROS Conversão de taxas de juros de mesmo período de aplicação: Para converter uma taxa de juros nominal em taxa de juros efetiva de mesmo período de aplicação, faz-se: onde: taxa de juros efetiva taxa de juros nominal número de períodos de composição da taxa de juros, isto é, número de vezes que a taxa nominal é capitalizada N 13

14 JUROS E TAXA DE JUROS Conversão de taxas de juros de mesmo período de aplicação: Para converter uma taxa de juros nominal em taxa de juros efetiva de mesmo período de aplicação, faz-se: Exemplo: 20% a.a. c.m determinar taxa efetiva anual (1 + 20% a.a. c.m ) 12 – 1 = 21,94% a.a. c.a. 12 N 14

15 JUROS E TAXA DE JUROS Conversão de taxas de juros efetivas de períodos diferentes: Para converter taxas efetivas de períodos diferentes, faz-se: onde: taxa de juros efetiva do período maior taxa de juros efetiva do período menor quantidade de períodos menores (m) existentes no período maior (M) 15

16 JUROS E TAXA DE JUROS Conversão de taxas de juros efetivas de períodos diferentes: Para converter taxas efetivas de períodos diferentes, faz-se: Exemplo: 5% a.m. determinar taxa efetiva trimestral (1 + 5% a.m.) 3 – 1 = 15,76% a.t. 16

17 JUROS E TAXA DE JUROS TAXA DE JUROS COM CAPITALIZAÇÃO CONTÍNUA Partindo-se do princípio de que o dinheiro tem valor no tempo, pode-se dizer que a desvalorização da base monetária ocorre contínua e instantaneamente. Em outras palavras, o verdadeiro período de capitalização corresponde ao menor período de tempo possível: é a CAPITALIZAÇÃO CONTÍNUA. 17

18 JUROS E TAXA DE JUROS TAXA DE JUROS COM CAPITALIZAÇÃO CONTÍNUA Seja: r = taxa nominal N = Número de períodos i = taxa efetiva => i = r/N i* = (1 + i) N -1 = (1 + r/N) N -1 = {(1 + 1/(N/r)) N/r } r – 1 Fazendo-se K=N/r, tem-se então: i* = {(1 + 1/K) K ) r - 1 Se a capitalização é contínua, então N => e K =>. Mas: e = lim (1 + 1/K) K Logo: Se K => i* = e r -1 i* = taxa efetiva com capitalização contínua 18

19 JUROS E TAXA DE JUROS TAXA DE JUROS COM CAPITALIZAÇÃO CONTÍNUA Então: i* = e r -1 i* = taxa efetiva com capitalização contínua F = P x (1+i) N => F = P x e rN P = F x (1+i) -N => P = F x e -rN 19

20 JUROS E TAXA DE JUROS TAXA DE JUROS COM CAPITALIZAÇÃO CONTÍNUA Joaquim aplicou $10.000,00 a uma taxa de juros de 20% ao ano, com capitalização contínua. a. Qual é a taxa efetiva anual? b. Qual será o montante que ele terá disponível daqui a 5 anos? i* = e r -1 a. F = P. e rN P = F. e -rN b. i* = e r -1 i* = e 0,2 -1 = 0,2214 => i* = 22,14% a.a. F = P. e rN F = x e 0,2 x 5 => F = $ ,82 20

21 SIMBOLOGIA DO FLUXO DE CAIXA N P 0 F N 0 A AA A A 0 A P = Principal F = Montante A = Uniforme Período de Capitalização: valores serão somente realizados ao final do período 21

22 SIMBOLOGIA DO FLUXO DE CAIXA Represente o seguinte fluxo de caixa de um projeto: O projeto consiste de um investimento de $800 hoje e $500 daqui a um ano e renderá $2000 em 4 anos e $1500 dentro de 5 anos

23 AMORTIZAÇÃO DE DÍVIDAS No pagamento de dívidas, cada parcela de pagamento (prestação) inclui: a. Amortização do principal, correspondente ao pagamento parcial (ou integral) do principal. b. Juros do período, calculados sobre o saldo devedor da dívida no início do período. PRESTAÇÃO = AMORTIZAÇÃO + JUROS 23

24 AMORTIZAÇÃO DE DÍVIDAS Tipos de sistemas de amortização de dívidas: 2.1 Financiamento com pagamento único no final 2.2 Financiamento com pagamento periódico de juros 2.3 Financiamento com pagamento de prestações iguais (método francês ou Tabela Price) 2.4 Financiamento com pagamento de amortizações constantes (SAC) 24

25 AMORTIZAÇÃO DE DÍVIDAS 2.1 Financiamento com pagamento único no final Neste tipo de financiamento o pagamento é feito ao final do período de empréstimo, incluindo a amortização e os juros. Ex: Empréstimo de R$ 1.000, a uma taxa de juros de 8% a.a., com um prazo de pagamento de 4 anos. F = P x (1 + i) n F = x (1 + 0,08) 4 F = 1.360,49 Prestação = 1.360,49 Amortização = Juros = 360,49 F=?

26 AMORTIZAÇÃO DE DÍVIDAS 2.1 Financiamento com pagamento único no final PSaldo devedor inicial JurosPrestaçãoAmortizaçãoSaldo devedor final , , , , , , , , , ,000,00 F=?

27 AMORTIZAÇÃO DE DÍVIDAS 2.2 Financiamento com pagamento periódico de juros O financiamento será pago da seguinte maneira: a. Ao final de cada período pagam-se apenas os juros daquele período; b. No final do prazo de financiamento, além dos juros relativos ao último período, paga-se também integralmente o principal da dívida. 27

28 AMORTIZAÇÃO DE DÍVIDAS 2.2 Financiamento com pagamento periódico de juros Ex: Empréstimo de R$ 1.000, a uma taxa de juros de 8% a.a., com um prazo de pagamento de 4 anos. Juros = P x i Juros = x 0,08 Juros = 80, P = A = 80 28

29 AMORTIZAÇÃO DE DÍVIDAS 2.2 Financiamento com pagamento periódico de juros PSaldo devedor inicial JurosPrestaçãoAmortizaçãoSaldo devedor final , , , , , , , , , ,000,00 29

30 AMORTIZAÇÃO DE DÍVIDAS 2.3 Financiamento com pagamento de prestações iguais (método francês ou Tabela Price) O financiamento será pago em prestações iguais, cada uma delas subdividida em duas parcelas: a. Juros do período, calculados sobre o débito no início do período. b. Amortização do principal, obtida pela diferença entre o valor da prestação e o valor dos juros do período. Juros Amortização Prestação NTEMPO 30

31 AMORTIZAÇÃO DE DÍVIDAS 2.3 Financiamento com pagamento de prestações iguais (método francês ou Tabela Price) Juros Amortização Prestação NTEMPO AMORTIZAÇÃO EM UM PERÍODO t GENÉRICO (AMORT t ): AMORT t = AMORT t-1 x ( 1 + i) AMORT t = AMORT 1 x (1 + i) t-1 JUROS EM UM PERÍODO t GENÉRICO (JUROS t ): JUROS t = PRESTAÇÃO - AMORT t 31

32 AMORTIZAÇÃO DE DÍVIDAS 2.3 Financiamento com pagamento de prestações iguais (método francês ou Tabela Price) Exemplo: Principal = R$ 1.000,00 Taxa de juros = 8% ao ano Prazo: 4 anos Tipo de financiamento: pagamento de prestações iguais P = A = ?

33 AMORTIZAÇÃO DE DÍVIDAS 2.3 Financiamento com pagamento de prestações iguais (método francês ou Tabela Price) A = P (A/P; 8%; 4) A = função PGTO excel A = 301,92 P = A = ?

34 AMORTIZAÇÃO DE DÍVIDAS 2.3 Financiamento com pagamento de prestações iguais (método francês ou Tabela Price) P Saldo devedor inicial JurosPrestaçãoAmortização Saldo devedor final , ,00301,92221,92778, ,25301,92239,67538, ,07301,92258,85279, ,36301,92279,560,00 34

35 AMORTIZAÇÃO DE DÍVIDAS 2.4 Financiamento com pagamento de amortizações constantes (SAC) O financiamento será pago em prestações uniformemente decrescentes, cada uma das quais subdividida em duas parcelas: a. Juros do período, calculados sobre o débito no início do período. b. Amortização do principal, calculada pela divisão do principal pelo número total de amortização. Prestação N TEMPO Juros Amortização 35

36 AMORTIZAÇÃO DE DÍVIDAS 2.4 Financiamento com pagamento de amortizações constantes (SAC) Prestação N TEMPO Juros Amortização JUROS EM UM PERÍODO t GENÉRICO (JUROS t ): JUROS t = (P/N) x i x (N t) PRESTAÇÃO EM UM PERÍODO t GENÉRICO (PREST t ): PREST t = (P/N) x i x (1 + i (N t)) 36

37 AMORTIZAÇÃO DE DÍVIDAS 2.4 Financiamento com pagamento de amortizações constantes (SAC) Exemplo: Principal = R$ 1.000,00 Taxa de juros = 8% ao ano Prazo: 4 anos Tipo de financiamento: pagamento de amortizações iguais P = Amortização 4231 Prestação 37

38 AMORTIZAÇÃO DE DÍVIDAS 2.4 Financiamento com pagamento de amortizações constantes (SAC) Amortização = P N Amortização = Amortização = 250,00 P = Amortização 4231 Prestação 38

39 AMORTIZAÇÃO DE DÍVIDAS 2.4 Financiamento com pagamento de amortizações constantes (SAC) P Saldo devedor inicial JurosPrestaçãoAmortização Saldo devedor final , ,00330,00250,00750, ,00310,00250,00500, ,00290,00250, ,00270,00250,000,00 39

40 CORREÇÃO MONETÁRIA A contínua desvalorização da moeda exige que novos métodos sejam incorporados à análise, para que seja possível representar esta desvalorização. Desta forma, a correção monetária é o método que a matemática financeira utiliza para levar em conta a desvalorização, reduzindo a mesma. Pré-fixada Pós-fixada 40

41 CORREÇÃO MONETÁRIA PRÉ-FIXADA Nestes casos, a inflação é considerada na análise através da correção monetária, que aumenta a taxa percentual, passando a incluir na mesma a taxa de juros e a correção monetária pré- fixada, conforme segue: onde: taxa global de juros correção monetária taxa real de juros 41

42 CORREÇÃO MONETÁRIA PÓS-FIXADA Nessa situação, a correção monetária fica em aberto e seus valores só serão conhecidos com o decorrer do tempo, à medida em que os índices de inflação (ou de correção) vão sendo publicados. Esse tipo de prática exige a indexação dos valores do fluxo de caixa. Esses índices (IGPM, CUB, OURO, DÓLAR, entre outros) funcionarão como deflatores enxugando a inflação. 42

43 CORREÇÃO MONETÁRIA 1. Exemplo Um investimento de $81.470,00 realizado em 74/02 proporcionou os seguintes recebimentos: _data__________$___ 74/ ,00 74/ ,00 74/ ,00 75/ ,00 75/ ,00 a) Calcular a taxa de juros global (i # ) proporcionada pelo investimento; b) Calcular a taxa de juros real (i) proporcionada pelo investimento; c) Calcular a taxa média de correção monetária (Ø) suportada pelo investimento. 43

44 CORREÇÃO MONETÁRIA 74/ /0574/0874/1175/02 75/ a) i # = ? Solução: i # = 9,43% ao trimestre 44

45 CORREÇÃO MONETÁRIA b) i = ? Solução: VALOR VALORRECEBIDO FLUXOS DE CAIXA MESESDA ORTN (em $) (EM ORTNs) ____________________________________________________________________________________ 02/74 81, , ,00 05/74 85, ,00 220,00 08/74 93, ,00 216,00 11/74104, ,00 212,00 02/75108, ,00 208,00 05/75114, ,00 204,00 45

46 CORREÇÃO MONETÁRIA b) i = ? Solução: 74/ /0574/0874/1175/0275/05 220,00 216,00 212,00 208,00 204,00 i = 2% ao trimestre 46

47 CORREÇÃO MONETÁRIA c) Ø = ? Solução: i # = 9,43% ao trimestre i = 2% ao trimestre (1 + 0,0943) = (1 + 0,02) x (1 + Ø) (1 + Ø) = 1,0728 Ø = 7,28% ao trimestre 47

48 CORREÇÃO MONETÁRIA 2. Exemplo Uma financeira oferece duas modalidades alternativas de financiamento: a. Com correção monetária pós-fixada + 12% a.a. b. Com correção monetária pré-fixada : 102% ao ano. Qual a taxa de correção monetária prevista pela financeira? Solução: i # = 102% ao ano i = 12% ao ano (1 + 1,02) = (1 + Ø) x (1 + 0,12) (1 + Ø) = 1,8036 Ø = 80,36% ao ano 48

49 CORREÇÃO MONETÁRIA 3. Exemplo Uma instituição financeira oferece duas modalidades de financiamento pagáveis em um ano: Pós-fixada: correção monetária + 8% Pré-fixada: 35% Considerando que é indiferente para a instituição financeira emprestar numa ou noutra modalidade, qual é a estimativa de correção monetária para o período de empréstimo? 49

50 MÉTODOS DE AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS 50

51 MÉTODOS DE AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS a)Deve haver alternativas de investimentos, pois não haverá porquê avaliar a compra de determinado equipamento se não houver condições de financiar o mesmo. b)As alternativas devem ser expressas em dinheiro. Não é possível comparar diretamente, por exemplo, 300 horas/ mensais de mão-de-obra com 500 Kwh de energia. Busca-se sempre um denominador comum, em termos monetários; c)Serão somente relevantes para a análise as diferenças entre as alternativas. As características idênticas das mesmas deverão ser desconsideradas; 51

52 MÉTODOS DE AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS d)Sempre devem ser considerados os juros sobre o capital empregado, pois sempre existem oportunidades de empregar o dinheiro de maneira que ele renda algum valor; e)Geralmente, em estudos econômicos, o passado não é considerado. Interessa apenas o presente e o futuro, pois o que já foi gasto não poderá ser recuperado. 52

53 MÉTODOS DE AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS EXEMPLO DE ALTERNATIVAS DE INVESTIMENTOS: Expandir a planta ou construir uma nova fábrica; Comprar um carro à vista ou a prazo; Aplicar seu dinheiro na poupança, em renda fixa ou em ações; Efetuar transporte de materiais manualmente ou comprar uma correia transportadora; Construir uma rede de abastecimento de água com tubos de menor ou maior diâmetro. 53

54 MÉTODOS DE AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS a. Reconhecimento da existência de um problema Sr. Roberto sempre chega atrasado ao trabalho. b. Definição do problema Necessidade de um meio de locomoção para ir ao trabalho. c. Procura de soluções alternativas Comprar um carro, uma moto ou ir de ônibus. d. Análise das alternativa Buscar informações relativas às alternativas definidas. e. Síntese das alternativas Em termos de custos, consumo, conforto, rapidez, etc. f. Avaliação das alternativas Comparação e escolha da alternativa mais conveniente. g. Apresentação dos resultados Relatório final. 54

55 MÉTODOS DE AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS Na avaliação de alternativas de investimento, deverão ser levados em conta: a. Critérios econômicos: Rentabilidade dos investimentos. b. Critérios financeiros: Disponibilidade de recursos. c. Critérios imponderáveis: Segurança, status, beleza, localização, facilidade de manutenção, meio ambiente, qualidade, entre outros. 55

56 MÉTODOS DE AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS UMA MÁ ANÁLISE DE UMA BOA ALTERNATIVA DE INVESTIMENTO É MELHOR DO QUE UMA BOA ANÁLISE DE UMA MÁ ALTERNATIVA DE INVESTIMENTO 56

57 MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS Comparação de alternativas de investimento Utilização de uma taxa de juros adequada Antes de iniciar a análise e comparação das diferentes oportunidades de investimento encontradas, deve-se determinar qual será o custo do capital atribuído à empresa. 57

58 Este custo refere-se diretamente aos riscos que o investidor irá correr ao optar por determinado investimento, e, conseqüentemente, ao retorno que o mesmo irá esperar por tal ação. Taxa Mínima de Atratividade (TMA) A TMA pode ser definida como a taxa de desconto resultante de uma política definida pelos dirigentes da empresa. Esta taxa deve refletir o custo de oportunidade dos investidores, que podem escolher entre investir no projeto que está sendo avaliado ou em outro projeto similar empreendido por uma outra empresa. MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS 58

59 Taxa Mínima de Atratividade (TMA) taxa de juros da empresa no mercado + incerteza dos valores de fluxo de caixa MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS 59

60 CUSTO MÉDIO PONDERADO DE CAPITAL (CMPC/WACC) Capital Próprio + Capital de terceiros Onde:valor das dívidas na estrutura de capital; valor do capital próprio na estrutura de capital; alíquota de tributação marginal; custo do capital de terceiros; custo do capital próprio. MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS 60

61 MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS CUSTO MÉDIO PONDERADO DE CAPITAL (CMPC/WACC) Exemplo: Calcule o CMPC de uma empresa calçadista que possui taxa de capital próprio de 15%a.a. e capta cerca de 30% de seus recursos investidos no mercado a uma taxa de 18%a.a. CMPC 61

62 PRINCIPAIS MÉTODOS DE AVALIAÇÃO DE ALTERNATIVAS: 1. Método do valor presente líquido (VPL) 2. Método do valor uniforme equivalente (VUE) 3. Método da taxa interna de retorno (TIR) 4. Método da taxa interna de retorno modificada (TIRM) 5. Método do tempo de recuperação do capital (pay-back) MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS 62

63 MÉTODO DO VALOR PRESENTE LÍQUIDO (VPL) O método VPL calcula o valor presente líquido de um projeto através da diferença entre o valor presente das entradas líquidas de caixa do projeto e o investimento inicial requerido para iniciar o mesmo. A taxa de desconto utilizada é a TMA da empresa. MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS VPL = ? TMA (%) = Y Z T W X 63

64 MÉTODO DO VALOR PRESENTE LÍQUIDO (VPL) Exemplo: Um investimento tem as seguintes características: - custo inicial = $25.000,00 - vida útil estimada = 5 anos - valor residual = $5.000,00 - receitas anuais = $6.500,00 - TMA da empresa: 12% ao ano Veja se o investimento é interessante para a empresa. MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS 64

65 MÉTODO DO VALOR PRESENTE LÍQUIDO (VPL) Solução: MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS VPL (12%) = (P/A; 12%; 4) (P/F; 12%; 5) VPL (12%) = 1.268,18 Como VPL > 0, o investimento: - é vantajoso (viável) economicamente, e - rende mais do que 12% ao ano! 65

66 MÉTODO DO VALOR PRESENTE LÍQUIDO (VPL) Análise de alternativas com diferentes tempos de vida: Quando as alternativas têm vidas úteis diferentes, deve-se considerar: a. Um período de tempo igual ao menor múltiplo comum das vidas; b. Ou o tempo de vida do projeto com um todo, quando ele for maior do que o anterior e múltiplo das vidas. MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS 66

67 MÉTODO DO VALOR PRESENTE LÍQUIDO (VPL) Exemplo: ALTERNATIVA: A B CUSTO INICIAL ($)10.000, ,00 VIDA ÚTIL ESTIMADA 5 anos 10 anos VALOR RESIDUAL ($) 2.000, ,00 CUSTO ANUAL DE OPERAÇÃO ($) 1.755, ,00 TMA = 12% a.a. Solução: VPL (A) = ,61 VPL (B) = ,06 Deve-se optar pela alternativa B, que é a que requer menor desembolso. MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS 67

68 MÉTODO DO VALOR UNIFORME EQUIVALENTE (VUE) MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS Todos os fluxos de caixa são transformados, a uma certa TMA, numa série uniforme equivalente. A melhor alternativa será aquela que apresentar: - o maior benefício anual, ou - o menor custo anual VUE TMA (%) = Y Z T W 68

69 MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS Exemplo anterior: Um investimento tem as seguintes características: - custo inicial = $25.000,00 - vida útil estimada = 5 anos - valor residual = $5.000,00 - receitas anuais = $6.500,00 - TMA da empresa: 12% ao ano Veja se o investimento é interessante para a empresa. 69 MÉTODO DO VALOR UNIFORME EQUIVALENTE (VUE)

70 MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS VPL (12%) = (P/A; 12%; 4) (P/F; 12%; 5) VPL (12%) = 1.268,18 VAUE (12%) = 1.268,18 (A/ P; 12%; 5) VUE (12%) = 351,81 Como VUE > 0, o investimento: - é vantajoso (viável) economicamente, e - rende mais do que 12% ao ano! 70 MÉTODO DO VALOR UNIFORME EQUIVALENTE (VUE)

71 MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS Uma empresa deve escolher entre duas alternativas de investimento,A e B. A alternativa A exige um investimento inicial de $10.000,00 e tem custo anual de operação de $1.500,00. Já a B exige um investimento inicial de $12.000,00, mas tem um custo anual de operação de $1.350,00. Sabendo-se que a TMA da empresa é de 10% ao ano e que ambas as alternativas durarão 5 anos, qual a opção mais vantajosa para a empresa? 71 MÉTODO DO VALOR UNIFORME EQUIVALENTE (VUE)

72 Solução: MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS Alternativa A: Alternativa B A uma taxa de 10% a.a. alternativa mais interessante é a A ,97 10% = , 50 10% = 72 MÉTODO DO VALOR UNIFORME EQUIVALENTE (VUE)

73 Análise de alternativas com diferentes tempos de vida: Quando as alternativas têm vidas úteis diferentes, deve-se supor que: a. A duração da necessidade é indefinida ou igual a um múltiplo comum da vida das alternativas; b. Tudo que é estimado para ocorrer no primeiro ciclo de vida do projeto irá ocorrer também em todos os ciclos de vida subseqüentes. MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS 73 MÉTODO DO VALOR UNIFORME EQUIVALENTE (VUE)

74 MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS Exemplo: ALTERNATIVA: Equip. A Equip. B CUSTO INICIAL ($) , ,00 VIDA ÚTIL ESTIMADA 6 anos 9 anos VALOR RESIDUAL ($) 1.800, ,00 CUSTO ANUAL DE OPERAÇÃO ($) 795,00 520,00 TMA (a.a.) 15% 15% Qual a alternativa mais interessante para a empresa? 74 MÉTODO DO VALOR UNIFORME EQUIVALENTE (VUE)

75 MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS Solução: EQUIPAMENTO A EQUIPAMENTO B A uma TMA de 15% a.a., a melhor alternativa para a empresa é a B % = , % = , MÉTODO DO VALOR UNIFORME EQUIVALENTE (VUE)

76 MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS Solução: Para concluir isto, deve-se considerar que: O equipamento deverá ser útil durante 18 anos, 36 anos e assim por diante, ou indefinidamente; Ao final de suas vidas úteis, os equipamentos A e B serão substituídos por outros com as mesmas características de funcionamento, custo e vida útil. 76 MÉTODO DO VALOR UNIFORME EQUIVALENTE (VUE)

77 MÉTODO DA TAXA INTERNA DE RETORNO (TIR) O método da TIR requer o cálculo de uma taxa que zera o VPL dos fluxos de caixa do projeto de investimento avaliado. Para o gestor determinar se o projeto é rentável ou não para a empresa, deverão ser comparadas a TIR resultante do projeto e a TMA desejada pela empresa. MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS VPL = 0 = TIR (%) Y Z T W X 77

78 MÉTODO DA TAXA INTERNA DE RETORNO (TIR) Exemplo: Um investimento tem as seguintes características: - custo inicial = $25.000,00 - vida útil estimada = 5 anos - valor residual = $5.000,00 - receitas anuais = $6.500,00 - TMA da empresa = 12% a.a. Veja se o investimento é interessante para a empresa. MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS 78

79 MÉTODO DA TAXA INTERNA DE RETORNO (TIR) Solução: MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS VPL (TIR) = (P/A; TIR; 4) (P/F; TIR; 5)= 0 TIR = 13,86% a.a. Como TIR >= TMA, o investimento: - é vantajoso e viável economicamente, e - rende 13,86% a.a. 79

80 MÉTODO DA TAXA INTERNA DE RETORNO (TIR) MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS 2.4. Você é o assessor econômico e financeiro de uma empresa de grande porte que precisa renovar seu atual processo de fabricação. A seu pedido, o Departamento de Métodos envia as duas alternativas detalhadas abaixo: A B CUSTO INICIAL ($) 2.000, VIDA ÚTIL 10 anos 10 anos VALOR RESIDUAL ($) 400,00 500,00 LUCRO ANUAL LÍQ. ($) 500,00 700,00 Utilizando os métodos do VPL e da TIR, analise essas alternativas e faça um relatório que auxilie a direção na tomada de uma decisão. 80

81 MÉTODO DA TAXA INTERNA DE RETORNO (TIR) MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS 2.4. Solução VPL A (15%) = 608,26 TIR A = 22,24% VPL B (15%) = 636,73 TIR B = 20,15% Qual é o mais interessante?? Pelo método VPL a empresa adotaria o projeto B. Pelo método TIR a empresa adotaria o projeto A. Qual projeto afinal a empresa deve selecionar? DEPENDE... 81

82 O PROBLEMA DA TAXA DE REINVESTIMENTO DOS FLUXOS DE CAIXA Os métodos do VPL e do VUE reinvestem todos os fluxos de caixa à TMA, por sua vez, o método da TIR reinveste-os à própria TIR. Assim, em função de se basearem em premissas de reinvestimento diferentes, os métodos de avaliação de alternativas apresentados podem conduzir a decisões discrepantes entre si. MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS 82

83 MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS O PROBLEMA DA TAXA DE REINVESTIMENTO DOS FLUXOS DE CAIXA Exemplo:

84 MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS O PROBLEMA DA TAXA DE REINVESTIMENTO DOS FLUXOS DE CAIXA Exemplo: 84

85 MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS O PROBLEMA DA TAXA DE REINVESTIMENTO DOS FLUXOS DE CAIXA Exemplo: PONTO DE FISCHER 85

86 MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS O PROBLEMA DA TAXA DE REINVESTIMENTO DOS FLUXOS DE CAIXA Ponto de Fischer: PONTO DE FISCHER "O ponto de Fischer corresponde à TIR do investimento incremental de um projeto relativamente ao outro Desta forma, o ponto de Fischer mede a TIR do investimento incremental de A em relação a B(ou vice-versa). 86

87 MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS O PROBLEMA DA TAXA DE REINVESTIMENTO DOS FLUXOS DE CAIXA Ponto de Fischer (i F ): Se: a) i > i F : os métodos do VPL e da TIR dão a mesma ordenação. b) i < i F : os métodos do VPL e da TIR dão ordenações diferentes. 87

88 MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS O PROBLEMA DA TAXA DE REINVESTIMENTO DOS FLUXOS DE CAIXA Ponto de Fischer (i F ): Entre essas duas suposições, o reinvestimento pela TMA é mais realista Essa discrepância nas ordenações é conseqüência das suposições relativas à taxa com que os fundos liberados pelo projeto são reinvestidos: a. Métodos do VPL e do VUE: reinvestimento pela TMA. b. Método da TIR: reinvestimento pela TIR. 88

89 MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS O PROBLEMA DA TAXA DE REINVESTIMENTO DOS FLUXOS DE CAIXA Ponto de Fischer (i F ): 2.4 Retomando o exercício anterior, defina o ponto de Fischer dos projetos e faça uma discussão sobre os mesmos. 89

90 MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS O PROBLEMA DA TAXA DE REINVESTIMENTO DOS FLUXOS DE CAIXA Ponto de Fischer (i F ): 2.4 Ponto Fischer = 15,72% 90

91 MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS MÉTODO DO TEMPO DE RECUPERAÇÃO DO CAPITAL (PAY-BACK) O período de pay-back é o tempo necessário para que o valor dos fluxos de caixa previstos e acumulados seja igual ao valor inicialmente investido. Ou seja, é o tempo que um projeto leva para se pagar. A escolha de um projeto está ligada diretamente ao período de retorno do capital mínimo exigido pela empresa, isto é, o ponto de corte. É um dos métodos mais simples de avaliação, porém ainda muito utilizado pelas empresas, por incorporar riscos e proporcionar à mesma, a escolha de projetos que retornam o capital investido o quanto antes. 91

92 MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS MÉTODO DO TEMPO DE RECUPERAÇÃO DO CAPITAL (PAY-BACK) Exemplo: A)B)

93 MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS MÉTODO DO TEMPO DE RECUPERAÇÃO DO CAPITAL (PAY-BACK) Pay-back com atualização: TMA = 10% a.a. A)B) A) (P/F; 10%;1) (P/F; 10%; 2) +... = 0 n > 3, o investimento não se paga. B) (P/F; 10%;1) (P/F; 10%; 2) +... = 0 n = 5,37 anos

94 MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS ADEQUAÇÃO DOS MÉTODOS APRESENTADOS: Métodos do VPL e VUE - VANTAGENS 1) São métodos baseados no fluxo de caixa dos investimentos; 2) Fazem uso do conceito do valor do dinheiro no tempo; 3) A decisão de investir ou não em um investimento reflete exatamente as necessidades da empresa, e não depende do julgamento arbitrário do gestor; 4) Incorporam no seu cálculo todo o fluxo de caixa do projeto; 5) Fornecem uma estimativa direta das mudanças na riqueza do acionista, derivadas do investimento realizado. 94

95 MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS ADEQUAÇÃO DOS MÉTODOS APRESENTADOS: Métodos do VPL e VUE - DESVANTAGENS 1) Aparentam ser menos palpáveis para os envolvidos no processo de decisão; 2) Taxa de reaplicação dos fluxos de caixa envolvidos no projeto. 95

96 MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS ADEQUAÇÃO DOS MÉTODOS APRESENTADOS: Método da TIR - VANTAGENS 1) Apelo psicológico e intuitivo que a mesma proporciona = não exige cálculo do custo de capital da empresa e é facilmente interpretado; 2) Leva em consideração o valor do dinheiro no tempo; 3) Proporciona a eliminação da decisão subjetiva e baseada em opiniões arbitrárias de gestores; 4) Baseia-se nos fluxos de caixa do projeto. 96

97 MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS ADEQUAÇÃO DOS MÉTODOS APRESENTADOS: Método da TIR - DESVANTAGENS 1) Difícil de calcular; 2) Pode proporcionar múltiplas taxas internas de retorno; 3) Taxas de reinvestimento dos fluxos de caixa envolvidos. 97

98 MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS ADEQUAÇÃO DOS MÉTODOS APRESENTADOS: Método do pay-back - VANTAGENS 1) Simples cálculo e interpretação; 2) Incorpora na sua aplicação o risco envolvido no projeto; 3) Se descontado, pode levar em consideração o valor do dinheiro no tempo. 98

99 MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS ADEQUAÇÃO DOS MÉTODOS APRESENTADOS: Método do pay-back - DESVANTAGENS 1) Se simples, não considera o valor do dinheiro no tempo; 2) Desconsidera os fluxos de caixa posteriores ao período de pay-back; 3) Subjetividade, ligada ao ponto de corte. 99

100 MÉTODOS EQUIVALENTES PARA AVALIAÇÃO ECONÔMICA DE INVESTIMENTOS ADEQUAÇÃO DOS MÉTODOS APRESENTADOS: MÉTODO DO VPL Adequado a investimentos que envolvam o curto prazo, ou que se realizem num pequeno número de períodos. MÉTODO DO VUE Adequado a análises que envolvam atividades operacionais da empresa, e especialmente para os investimentos que são normalmente repetidos. MÉTODO DA TIR Permite uma maior transparência à análise de investimentos, facilitando a comparação com índices gerais e/ ou setoriais. MÉTODO DO PAY-BACK Somente como método complementar. 100

101 DEPRECIAÇÃO DE ATIVOS E O IMPACTO DO IMPOSTO DE RENDA Um equipamento, com o uso e o desgaste, tem seu valor diminuído. Com o tempo, o valor do imobilizado vai decrescendo e, para viabilizar sua reposição, torna-se necessário acumular uma reserva, que permitirá no fim de certo tempo a aquisição de um novo equipamento. Essa reserva é denominada depreciação, e o tempo necessário para repor o equipamento é chamado vida útil. Logo, a depreciação não é uma quantia gasta, mas um fundo de reserva que deverá permitir à empresa realizar investimentos de reposição do seu ativo fixo. 101

102 DEPRECIAÇÃO DE ATIVOS E O IMPACTO DO IMPOSTO DE RENDA CONCEITO DE DEPRECIAÇÃO: 1)FÍSICA Interpretada como sendo a perda de valor pelo desgaste do bem. No caso de uma máquina ou equipamento, por exemplo, o desgaste será devido não somente à sua utilização normal, mas também à ação do tempo e das intempéries 102

103 DEPRECIAÇÃO DE ATIVOS E O IMPACTO DO IMPOSTO DE RENDA CONCEITO DE DEPRECIAÇÃO: 2)ECONÔMICA Interpretada como sendo o declínio sofrido na capacidade que o bem apresenta em gerar receitas. Se, ao longo do tempo, diminui o valor da produção de um equipamento, este experimentará uma correspondente redução no seu valor intrínseco. O declínio no valor líquido de produção decorre da exaustão física do equipamento, da obsolescência do equipamento e do próprio produto. As constantes inovações tecnológicas, e mesmo as mudanças no gosto dos consumidores, podem fazer que um bem se torne de utilização antieconômica, ou obsoleto. 103

104 DEPRECIAÇÃO DE ATIVOS E O IMPACTO DO IMPOSTO DE RENDA CONCEITO DE DEPRECIAÇÃO: 3)CONTÁBIL Corresponde a uma estimativa da perda de valor sofrida pelo bem, com finalidade de efetuar um registro contábil. Visando fazer face à perda de valor sofrido pelo bem é que surgiu a depreciação contábil: periodicamente seria efetuada uma apropriação de recursos, num montante que traduzisse a perda de valor experimentada pelo bem durante o período considerado, procurando-se constituir uma reserva, a qual é chamada de fundo de depreciação, de tal modo que fosse possível a aquisição de um novo bem quando o atual estivesse considerado como de utilização antieconômica. 104

105 DEPRECIAÇÃO DE ATIVOS E O IMPACTO DO IMPOSTO DE RENDA CONCEITO DE DEPRECIAÇÃO: Na prática, fora as limitações impostas pela legislação do Imposto de Renda, o que se faz é estimar o prazo ao longo do qual se supõe que o bem terá uma utilização econômica, prazo esse que é chamado de vida útil, reservando-se, no final de períodos pré-determinados (geralmente o ano), quantias, cujos valores são determinados através de diferentes métodos, e que acumulam uma soma suficiente para a recomposição do bem no fim de sua vida útil. 105

106 DEPRECIAÇÃO DE ATIVOS E O IMPACTO DO IMPOSTO DE RENDA CONCEITO DE VIDA ÚTIL 1) CONTABILIDADE Corresponde, em anos, ao tempo que em geral a legislação estabelece para a sua depreciação fiscal. Ex: Máquina comprada por R$ , depreciada a 10% a.a., significa que sua vida útil pela contabilidade é de 10 anos! 106

107 DEPRECIAÇÃO DE ATIVOS E O IMPACTO DO IMPOSTO DE RENDA CONCEITO DE VIDA ÚTIL 2) CARÁTER TÉCNICO A vida útil é estabelecida em função do desgaste físico e técnico da máquina = É A VIDA ÚTIL QUE INTERESSA AOS ENGENHEIROS! Ex: Máquina comprada por R$ , tem sua vida útil estimada em 5 anos pelo corpo técnico da empresa que prevê o surgimento de uma nova tecnologia no mercado! 107

108 DEPRECIAÇÃO DE ATIVOS E O IMPACTO DO IMPOSTO DE RENDA CONCEITO DE VIDA ÚTIL 3) FORMAÇÃO DE PREÇOS E DE CUSTOS Utiliza-se a depreciação calculatória, que visa estabelecer a participação e distribuir os bens do ativo fixo na composição dos custos dos produtos, para formação dos preços. Logicamente, depende da conjuntura dos negócios a conveniência de uma maior ou menor aceleração da depreciação. Ex: Valor atual de mercado 108

109 DEPRECIAÇÃO DE ATIVOS E O IMPACTO DO IMPOSTO DE RENDA CONCEITO DE VIDA ÚTIL 4) ECONÔMICO Corresponde a um retorno de capital, e a vida útil econômica ao tempo de utilização do equipamento de forma econômica ao tempo deve levar em conta os riscos do investimento, e depende das diretrizes estabelecidas pela direção da empresa. E é normalmente a depreciação econômica que deve ser utilizada para estudos de rentabilidade de equipamentos e análise de investimentos. 109

110 DEPRECIAÇÃO DE ATIVOS E O IMPACTO DO IMPOSTO DE RENDA CONCEITO DE VIDA ÚTIL A limitação das taxas de depreciação em níveis baixos (vida útil longa) provoca a descapitalização da empresa, numa economia inflacionária. Nesse sentido, a substituição do conceito de vida útil física pelo de vida útil econômica produz a reposição geradora de progresso, permitindo a substituição periódica dos equipamentos e um grau maior de aproveitamento tecnológico. É por isso que, nos países industrializados, o problema das depreciações é tratado com grande liberalismo, permitindo maior aceleração das depreciações e, consequentemente, maior desenvolvimento industrial. 110

111 DEPRECIAÇÃO DE ATIVOS E O IMPACTO DO IMPOSTO DE RENDA CONCEITO DE VIDA ÚTIL EQUIPAMENTOS PRAZO DE DEPRECIAÇÃO de uso geral 10 anos moderadamente especiais 05 anos especializados 03 anos altamente especiais 01 ano A vida útil de um bem poderá, ainda ser acelerada em função do seu grau de utilização. REGIME DE TRABALHO COEF. MULTIPLICADOR Um turno de 8h 1,0 Dois turnos de 8h 1,5 Três turnos de 8h 2,0 111

112 Cumpre destacar que o fisco não será necessariamente lesado pela aplicação de altas taxas de depreciação, pois o que foi depreciado em um ano não poderá sê-lo nos anos seguintes, ocasião em que o contribuinte pagará maiores impostos em conseqüência do aumento do lucro bruto. OBSERVAÇÃO: 112 DEPRECIAÇÃO DE ATIVOS E O IMPACTO DO IMPOSTO DE RENDA

113 MÉTODOS DE DEPRECIAÇÃO Existem diversos métodos para calcular a depreciação anual de um ativo. Entre estes métodos cabe mencionar- se os seguintes: Método Linear Método da Soma dos Dígitos Método da Soma Inversa dos Dígitos Método por Produção Método Exponencial 113 DEPRECIAÇÃO DE ATIVOS E O IMPACTO DO IMPOSTO DE RENDA

114 CÁLCULO DA DEPRECIAÇÃO Método Linear É o método utilizado pela contabilidade fiscal. Consiste de um valor de depreciação constante para toda a vida útil do ativo, idêntico de ano para ano, obtido a partir da divisão do valor do equipamento pela vida útil. Em conseqüência da inflação, tanto o valor do equipamento como os valores acumulados da reserva, constituintes do fundo de depreciação, deverão ser avaliados pelos índices fornecidos pelo governo. 114

115 DEPRECIAÇÃO DE ATIVOS E O IMPACTO DO IMPOSTO DE RENDA CÁLCULO DA DEPRECIAÇÃO Método Linear Para calcular o valor da depreciação deve-se dividir o valor de compra do ativo pela sua vida útil estimada, ou multiplicar o valor de compra pela taxa de depreciação do ativo: Depreciação anual = Valor de compra do ativo Vida útil contábil ou Depreciação anual = Valor de compra do ativo x Taxa depreciação 115

116 DEPRECIAÇÃO DE ATIVOS E O IMPACTO DO IMPOSTO DE RENDA CÁLCULO DA DEPRECIAÇÃO Método Linear P = Taxa: 10%a.a. D = anos D = /ano P (ANOS)SALDO ATUALDEPRECIAÇÃORESERVA ACUM , ,

117 DEPRECIAÇÃO DE ATIVOS E O IMPACTO DO IMPOSTO DE RENDA IMPACTO DO IMPOSTO DE RENDA NAS ANÁLISES Assim como as pessoas físicas, uma empresa também deve pagar imposto de renda e contribuição social sobre o resultado de seu período! O cálculo do pagamento do IR/CS no caso de uma análise de investimento é: Lucro do Período (LP) = Receitas (R) – Custos (C) Imposto a pagar = LP x Alíquota IR/CS Lucro real (L´) = (R – C) x (1- IR/CS) 117

118 DEPRECIAÇÃO DE ATIVOS E O IMPACTO DO IMPOSTO DE RENDA IMPACTO DO IMPOSTO DE RENDA NAS ANÁLISES A legislação tributária (artigo 186 do Decreto nº , de 10 de maio de 1966) permite que o valor atribuído à depreciação no período seja computado como custo; isto é, para fins de pagamento de imposto de renda. Desta forma, o cálculo do pagamento do IR/CS no caso de uma análise de investimento ficaria: Lucro Tributável (LT) = Receitas (R) – Custos (C) – Depreciação (D) Imposto Tributável (IT) = LT x Alíquota IR/CS 118

119 DEPRECIAÇÃO DE ATIVOS E O IMPACTO DO IMPOSTO DE RENDA IMPACTO DO IMPOSTO DE RENDA NAS ANÁLISES Lucro real (L´) = (R – C) x (1- IR/CS) Lucro Tributável (LT) = Receitas (R) – Custos (C) – Depreciação (D) Imposto Tributável (IT) = LT x Alíquota IR/CS Então: Lucro Líquido (LL) = R – C - IT = R – C – (R – C – D ) x IR/CS Lucro Líquido (LL) = (R – C) x (1- IR/CS) + D x IR/CS Lucro Líquido (LL) = L´ + D x IR/CS 119

120 DEPRECIAÇÃO DE ATIVOS E O IMPACTO DO IMPOSTO DE RENDA IMPACTO DO IMPOSTO DE RENDA NAS ANÁLISES Lucro Líquido (LL) = L´ + D x IR/CS Vê-se então, claramente, que o empresário é beneficiado quando considera uma depreciação contábil, pois deixará de desembolsar uma quantia igual ao produto D x IR/CS. O lucro líquido dependerá do que for alocado à rubrica do bem adquirido. Assim, a renda declarada pela empresa em cada ano deverá ser reduzida da carga de depreciação, e haverá um efeito correspondente sobre o imposto de renda pago!! 120

121 DEPRECIAÇÃO DE ATIVOS E O IMPACTO DO IMPOSTO DE RENDA IMPACTO DO IMPOSTO DE RENDA NAS ANÁLISES Lucro Líquido (LL) = L´ + D x IR/CS Exemplo: Suponha-se um investimento de $10.000,00 sem valor residual e com uma vida útil estimada de 5 anos. Tem-se, então: Supondo-se ainda uma receita líquida anual de $3.000,00 antes dos impostos e uma taxa de I.R. de 50%, os fluxos de caixa depois dos impostos podem ser calculados como mostra o quadro a seguir: 121

122 DEPRECIAÇÃO DE ATIVOS E O IMPACTO DO IMPOSTO DE RENDA IMPACTO DO IMPOSTO DE RENDA NAS ANÁLISES ANO DEPREC EFEITO S/FLUXO TOTAL F.C.D.I. EFEITO S/RECEITA TOTAL F.C.A.I. 122

123 DEPRECIAÇÃO DE ATIVOS E O IMPACTO DO IMPOSTO DE RENDA IMPACTO DO IMPOSTO DE RENDA NAS ANÁLISES Antes do IR: VPL (10%) = $ 1.372,36 TIR = 15,24% Depois do IR: VPL (10%) = $ -523,03 TIR = 7,93% PERCEBE-SE QUE, SEM A CONSIDERAÇÃO DO IMPACTO DO IMPOSTO DE RENDA E DA DEPRECIAÇÃO NO FC, A ANÁLISE DO PROJETO PODE FICAR DISTORCIDA, PREJUDICANDO AS ESCOLHAS DA EMPRESA!! 123

124 INCORPORAÇÃO DA INFLAÇÃO NAS ANÁLISES Tipos de Inflação 1) Homogênea: A inflação é considerada homogênea quando todos os componentes do fluxo de caixa analisado são afetados pela mesma taxa de inflação. Isto é, quando supomos uma inflação idêntica para todos os itens da análise

125 INCORPORAÇÃO DA INFLAÇÃO NAS ANÁLISES Tipos de Inflação 1) Homogênea: Para incorporar a inflação homogênea no fluxo de caixa de um projeto para análise econômica, devemos capitalizar todos os fluxos a uma taxa i INF (taxa de inflação do período). Entretanto, fazendo isto, deve-se incorporar à TMA da empresa a inflação média do período projetado! 125

126 INCORPORAÇÃO DA INFLAÇÃO NAS ANÁLISES Tipos de Inflação 1) Homogênea: Assim, temos: Para um projeto que gera receita de $ ao ano, com inflação de 4% a.a. e TMA de 12%a.a., temos: VPL = x 1, x (1,04) 2 = 1.690,05 (1,12) x (1,04) (1,12) 2 x (1,04) 2 126

127 INCORPORAÇÃO DA INFLAÇÃO NAS ANÁLISES Tipos de Inflação 1) Homogênea: PORÉM: A DEPRECIAÇÃO, POR LEI, NÃO PODE SER ATUALIZADA!! ASSIM: 127

128 INCORPORAÇÃO DA INFLAÇÃO NAS ANÁLISES Tipos de Inflação 1) Homogênea: Para ilustrar o uso desta equação, suponha-se um projeto onde se tenha um investimento de R$ ,00, com taxa de depreciação de 50% a.a., e receitas de R$ ,00 ao longo de 2 anos. Considere uma TMA de 10% a.a., inflação de 4% a.a, e taxa do imposto de renda de 34% a.a. O resultado deste projeto seria: 128

129 INCORPORAÇÃO DA INFLAÇÃO NAS ANÁLISES Tipos de Inflação 1) Homogênea: I0 = R$ D = R$ R = R$ n = 2 TMA = 10% a.a. i INF = 4% a.a. IR = 34% a.a. reais 129

130 IMPACTO DO IMPOSTO DE RENDA NAS ANÁLISES A questão do Valor Residual O pagamento de imposto de renda sobre o valor residual de uma máquina, equipamento, prédio ou afins é calculado a partir do que até então já foi depreciado pela contabilidade: IR a pagar = (Valor residual – Valor contábil) x IR/CS Por sua vez: Valor contábil = Valor de compra – o que foi depreciado até então INCORPORAÇÃO DA INFLAÇÃO NAS ANÁLISES 130

131 IMPACTO DO IMPOSTO DE RENDA NAS ANÁLISES A questão do Valor Residual Como a depreciação não é atualizável, deve-se incorporar a inflação para que a análise se aproxime à realidade do fluxo de caixa de caixa empresa: Valor contábil = Valor de compra – Valor depreciado até então (1 + i INF ) n INCORPORAÇÃO DA INFLAÇÃO NAS ANÁLISES 131

132 IMPACTO DO IMPOSTO DE RENDA NAS ANÁLISES A questão do Valor Residual Valor contábil = Valor de compra – Valor depreciado até então (1 + i INF ) n Quando: O ativo estiver totalmente depreciado, então valor contábil = 0 Imposto de renda incidará sobre o valor de venda total O ativo estiver parcialmente depreciado, então valor contábil > 0 Imposto não incidirá sobre a parcela não depreciada INCORPORAÇÃO DA INFLAÇÃO NAS ANÁLISES 132

133 IMPACTO DO IMPOSTO DE RENDA NAS ANÁLISES A questão do Valor Residual Exemplo: Considere uma empresa de transporte de produtos químicos, que investe em um novo caminhão de R$ Este caminhão pode ser depreciado em 10 anos, ou seja, 10% a.a.. A compra deste caminhão renderá para a empresa uma receita líquida de R$ por ano. Entretanto, devido a problemas de caixa, a empresa vendeu o equipamento após seis anos de uso por R$ Sabendo que a TMA da empresa é de 15%a.a., que a inflação média dos períodos foi 4%a.a. e que a taxa de imposto de renda da empresa é de 34%, conclua sobre a aquisição. INCORPORAÇÃO DA INFLAÇÃO NAS ANÁLISES 133

134 INCORPORAÇÃO DA INFLAÇÃO NAS ANÁLISES Tipos de Inflação 2) Heterogênea: A inflação pode também afetar os componentes de um fluxo de caixa de forma diferenciada! Quando isto acontece, ela é chamada de inflação heterogênea. Ou seja, quando as receitas e os custos, por exemplo são afetados por índices de inflação diferentes. 134

135 INCORPORAÇÃO DA INFLAÇÃO NAS ANÁLISES Tipos de Inflação 2) Heterogênea: Por exemplo, é muito comum ocorrer este tipo de inflação em construções de empreendimentos, onde diferentes tipos de materiais são afetados por taxas de inflação específicas: Cimento – Variação de 4% Agregados – Variação de 2% Blocos – Variação de 8% Mão-de-obra – Variação de 3%. 135

136 INCORPORAÇÃO DA INFLAÇÃO NAS ANÁLISES Tipos de Inflação 2) Heterogênea: Quando isto acontece, devemos atualizar o fluxo de caixa de cada componente por sua inflação específica, em todos os períodos. Da mesma forma, a taxa de desconto a ser utilizada não será somente em função da TMA. A inflação média do período deverá ser incorporada à mesma! 136

137 INCORPORAÇÃO DA INFLAÇÃO NAS ANÁLISES Tipos de Inflação 2) Heterogênea: Média ponderada das inflações de cada componente do fluxo de caixa: (1.000 x 4%) + (5.000 x 10%) + (3.000 x 7%) = 8,33% ( ) TMA média = (1+8,33%) x (1+ 10%) -1 TMA média = 19,16% 137

138 INCORPORAÇÃO DA INFLAÇÃO NAS ANÁLISES Tipos de Inflação 2) Heterogênea: Exemplo: Investimento: R$ Receitas: R$ , com inflação de 30% a.a. Custos: R$ 4.000, com inflação de 35% a.a. Mão-de-obra: R$ 1.000, com inflação de 40%a.a. Material: R$ 3.000, com inflação de 25%a.a. TMA: 10% a.a. Vida útil: 3 anos 138

139 ANÁLISE DE RISCO E INCERTEZA DO PROJETO RISCO É uma situação para a qual uma distribuição de probabilidades objetivas pode ser associada aos resultados, isto é, o risco é a possibilidade de que uma decisão possa implicar em diferentes resultados. INCERTEZA É uma situação para a qual ou não se pode associar qualquer distribuição de probabilidades ou somente se pode associar uma distribuição de probabilidades subjetiva. Ou seja, a incerteza significa que uma decisão poderá chegar a vários resultados diferentes, cujas probabilidades são desconhecidas.

140 ANÁLISE DE RISCO E INCERTEZA DO PROJETO MÉTODOS DE INCORPORAÇÃO DO RISCO E DA INCERTEZA Redução sistemática dos parâmetros do cálculo do investimento, que envolve o ajuste subjetivo das entradas e saídas do projeto, sub-avaliando o mesmo; Adição de um prêmio de risco à taxa de desconto da empresa, que nada mais é do que inserir na TMA da empresa um fator p de risco, aumentando relativamente a mesma; Ajuste quantitativo do fluxo de caixa, que pode ser feito através do método equivalente-certeza, que baseia-se na inserção de um valor t, que irá ser tão menor quanto maior for o risco do projeto, calculado através da função utilidade; e Redução do tempo de recuperação do capital do projeto.

141 ANÁLISE DE RISCO E INCERTEZA DO PROJETO MÉTODOS DE MENSURAÇÃO DO RISCO E DA INCERTEZA IMPORTÂNCIA: A mensuração se torna importante à medida que a rentabilidade projetada nem sempre acaba sendo a rentabilidade efetivamente realizada!! SOLUÇÃO: Alguns métodos para previsão de possíveis erros associados aos fluxos de caixa foram desenvolvidos: MÉTODOS DETERMINÍSTICOS MÉTODOS PROBABILÍSTICOS

142 ANÁLISE DE RISCO E INCERTEZA DO PROJETO MÉTODOS DE MENSURAÇÃO DO RISCO E DA INCERTEZA MÉTODOS DETERMINÍSTICOS Análise de sensibilidade; Análise de cenários. MÉTODOS PROBABILÍSTICOS Avaliação da covariância do projeto com outros projetos; Distribuição da rentabilidade esperada pelo projeto; Cálculo da probabilidade de prejuízo.

143 ANÁLISE DE RISCO E INCERTEZA DO PROJETO ANÁLISE DE SENSIBILIDADE Exemplo: Em novembro, uma empresa investirá R$ 100 mil em equipamentos e treinamento de pessoal para lançar um calçado de verão, nos meses de dezembro, janeiro e fevereiro. A previsão de vendas é de 10 mil pares por mês a um preço de R$ 10,00 o par. Os custos fixos serão de R$ 20 mil/mês e os custos variáveis de R$ 4,00 o par. Ao final de três meses a empresa venderá o equipamento por R$ 30 mil. Analise a TIR sob a previsão de vendas e sob a possibilidade de erros nesta previsão. A TMA da empresa é de 10% a.m.

144 ANÁLISE DE RISCO E INCERTEZA DO PROJETO ANÁLISE DE SENSIBILIDADE Exemplo: I0 = R$ Receita = x 10,00 = R$ / mês Custos = x 4,00 = R$ / mês Valor residual = TIR = 20,94% a.m

145 ANÁLISE DE RISCO E INCERTEZA DO PROJETO ANÁLISE DE SENSIBILIDADE Exemplo: Se as vendas forem mais baixas?? I0 = R$ Receita = x 10,00 = R$ / mês Custos = x 4,00 = R$ / mês Valor residual = TIR = 13,56% a.m

146 ANÁLISE DE RISCO E INCERTEZA DO PROJETO ANÁLISE DE SENSIBILIDADE Exemplo: Se as vendas forem mais baixas ainda?? I0 = R$ Receita = x 10,00 = R$ / mês Custos = x 4,00 = R$ / mês Valor residual = TIR = 6,02% a.m

147 ANÁLISE DE RISCO E INCERTEZA DO PROJETO ANÁLISE DE SENSIBILIDADE Exemplo: Se as vendas forem mais baixas ainda?? I0 = R$ Receita = x 10,00 = R$ / mês Custos = x 4,00 = R$ / mês Valor residual = TIR = -1,75% a.m

148 ANÁLISE DE RISCO E INCERTEZA DO PROJETO ANÁLISE DE SENSIBILIDADE Ponto de Equilíbrio: pares/mês X

149 LISTAS DE EXERCÍCIOS 149

150 LISTA 1 Exercício 1.1 Um capital de $50.000,00 foi aplicado a uma taxa de juros de 10% ao ano. Calcular o montante total disponível ao final de 4,5 e 5 anos, supondo: a. Juros simples. b. Juros compostos. 150

151 LISTA 1 Exercício 1.2 Determinar as taxas efetivas anuais equivalentes a uma taxa nominal de 24% ao ano com os seguintes períodos de capitalização: a. Semestral. b. Trimestral. c. Mensal. 151

152 LISTA 1 Exercício 1.3 Um investidor aplicou $ ,00 num fundo de investimentos que paga 12% ao ano. Calcular o montante que estará disponível daqui a 1 ano, supondo que o dinheiro aplicado será capitalizado: a. Anualmente. b. Semestralmente. c. Quadrimestralmente. d. Bimestralmente. e. Mensalmente. f. Continuamente. 152

153 LISTA 1 Exercício 1.4 Um investidor aplicou $10.000,00 a uma taxa de juros de 20% ao ano, objetivando obter uma série de retiradas anuais de $2.000,00. Pede-se: a) Em termos financeiros, daqui a quantos anos este fundo se esgotará? b) Em termos econômicos, daqui a quantos anos este fundo se esgotará?(Supor uma taxa de remuneração real de 6% aa) 153

154 LISTA 1 Exercício 1.5 A taxa de juros cobrada pelo Banco Internacional é de 30% ao ano, sendo sua capitalização semestral. Já o Banco Regional informa que sua taxa é de 29% ao ano, mas com capitalização mensal. Qual a melhor taxa para o cliente? 154

155 LISTA 1 Exercício 1.6 Há um ano uma pessoa depositou $ 8.000,00 numa caderneta de poupança que pagou 35% ao ano de correção monetária, capitalizada trimestralmente, mais 6% de juros ao ano, capitalizados mensalmente. Qual o saldo da conta hoje? 155

156 LISTA 1 Exercício 1.7 O Banco PUC oferece uma linha de crédito a uma taxa de 18% ao semestre, com capitalização mensal. PEDE-SE: a. Qual a taxa anual nominal cobrada pelo Banco PUC? b. Qual a taxa anual efetiva cobrada pelo Banco PUC? c. A empresa UFRGS utilizou essa linha de crédito e tomou emprestado $10.000,00 os quais deverão ser pagos em 24 meses, num único pagamento. Determinar o valor desse pagamento. 156

157 LISTA 1 Exercício 1.8 O Banco LOSANDES oferece uma linha de crédito a uma taxa efetiva de 60% ao ano, com capitalização mensal. Pede-se: a) Qual a taxa anual nominal cobrada pelo Banco? b) Qual a taxa trimestral efetiva cobrada pelo Banco? c) A empresa LAPAZ utilizou essa linha de crédito e tomou emprestada uma determinada quantia. Ao final de 18 meses, ela quitou o empréstimo realizando um único pagamento de $20.260,00. Determinar o valor do empréstimo. 157

158 LISTA 1 Exercício 1.9 Organizar o plano de amortização de um empréstimo de $2.000,00 a ser pago 5 prestações mensais. A taxa de juros é de 5% ao mês. Utilizar: a. Sistema de prestações iguais - Tabela Price. b. Sistema de Amortizações Constantes - SAC. 158

159 LISTA 1 Exercício 1.10 O preço-base de um eletrodoméstico na loja ABC é de $40,00. Buscando incentivar suas vendas, a loja oferece as seguintes condições de pagamento: 15% de desconto nas vendas à vista; uma entrada de $10,00 mais 3 prestações mensais também de $10,00 ( dias) nas vendas a prazo. PEDE-SE: a. Qual é a taxa de juros praticada pela loja ABC? b. Considerando o mesmo valor de entrada e supondo juros de 10% ao mês, qual seria o valor das 3 prestações mensais iguais a serem pagas? 159

160 LISTA 1 Exercício 1.11 Procurando incentivar as vendas de um determinado produto, uma loja de departamentos propõe as seguintes condições de pagamento: 20% de desconto à vista. 3 prestações de $10.000,00 (em dias). 4 prestações de $7.500,00 (em dias). Pede-se: a. Você possui o dinheiro para pagar à vista, mas este se encontra aplicado num fundo de curto prazo que paga 20% ao mês. Vale a pena pagar a prazo? Em caso afirmativo, o pagamento deverá ser feito em 3 ou 4 prestações? Justificar todas as respostas. b. Que percentagem de desconto faria com que você ficasse indiferente, economicamente, entre realizar o pagamento à vista ou a prazo? 160

161 LISTA 1 Exercício 1.12 Uma conhecida rede de lojas propõe as seguintes alternativas de pagamentos: 30% de desconto à vista. 20% de desconto em 2 vezes (1 + 1). 10% de desconto para pagamentos feitos em 3 vezes (1 + 2). 4 vezes (1 + 3), sem desconto. Atraído pelas ofertas, Ricardo Lessa acaba se interessando por determinado eletrodoméstico. Apesar de dispor de todo o dinheiro necessário para realizar o pagamento à vista, ele analisa a oportunidade de financiar a compra. Pede-se: a. Sabendo que o dinheiro de Ricardo está aplicado num fundo de curto prazo, que rende 30% ao mês, ajude-o a encontrar a alternativa que maximizará seus recursos financeiros. b. Que percentagem de desconto faria com que Ricardo ficasse indiferente, economicamente, entre pagar à vista ou a prazo? 161

162 LISTA 1 Exercício 1.13 Para pagar um empréstimo de $ ,00 contraído em junho de 1988, a empresa TECNOSUL deverá desembolsar $ ,00 em outubro de Calcular a taxa e o montante de juros pagos pela empresa no período. Valores nominais das OTNs: JAN 596,94JUL1.598,26 FEV 695,50AGO1.982,48 MAR 820,42SET2.392,06 ABR 951,77OUT2.966,39 MAI 1.135,27NOV3.774,73 JUN 1.337,12DEZ4.790,89 162

163 LISTA 1 Exercício 1.14 Procurando reforçar seu capital de giro, a empresa TMS tomou um empréstimo de $10.000,00, dos quais $5.000,00 foram liberados em 01/03/88 e $5.000,00 30 dias após. O empréstimo foi pago em 6 prestações mensais iguais de $3.000,00, vencendo a primeira em 01/05/88. Pede-se: a. Qual foi a taxa mensal global de juros (juros reais + correção monetária)? b. Qual foi a taxa mensal real de juros? E qual foi o montante de juros pagos pela empresa no período? c. Qual foi a taxa mensal média de correção monetária do período do empréstimo? d. Determine, também, a taxa mensal média de correção monetária paga pela empresa no período do empréstimo. 163

164 LISTA 2 Exercício 2.1 Uma lavanderia analisa duas alternativas para melhorar seus serviços de entrega: Comprar uma camionete: Custo de aquisição $ ,00 Valor residual: $40.000,00 Vida útil: 10 anos Custos anuais de manutenção: $80.000,00 Alugar uma camionete: Custo anual de aluguel: $ ,00 Qual a melhor opção, sabendo-se que a TMA da lavanderia é de 15% ao ano? 164

165 LISTA 2 Exercício 2.2 Dois tipos de pavimentação estão sendo estudados para determinada estrada, os quais acarretarão os seguintes custos: A B CUSTO INICIAL($) , ,00 REPAVIMENTAÇÃO 12 anos 18 anos CUSTO DE REPAV($) , ,00 CUSTO ANUAL DE CONSERV($) , ,00 Considerando uma TMA de 6% ao ano, que tipo de pavimentação deverá ser escolhido? 165

166 LISTA 2 Exercício 2.3 O Sr. Longo está considerando a possibilidade de entrar de sócio de uma empresa onde espera obter $ ,00 por ano de lucro. Ele planeja permanecer como sócio da empresa por 8 anos, ao final dos quais venderá sua parte na sociedade por $ ,00. Se o Sr. Longo tiver a possibilidade de conseguir empréstimos a uma taxa de 10% ao ano, qual o valor máximo que ele deverá pagar para entrar na sociedade? 166

167 LISTA 2 Exercício 2.4 Você é o assessor econômico e financeiro de uma empresa de grande porte que precisa renovar seu atual processo de fabricação. A seu pedido, o Departamento de Métodos envia as duas alternativas detalhadas abaixo: AB CUSTO INICIAL ($) 2.000, VIDA ÚTIL 10 anos 10 anos VALOR RESIDUAL ($) 400,00 500,00 LUCRO ANUAL LÍQ. ($) 500,00 700,00 Utilizando os métodos do VPL e da TIR, analise essas alternativas e faça um relatório que auxilie a direção na tomada de uma decisão. 167

168 LISTA 2 Exercício 2.5 Uma fábrica necessita ampliar suas instalações físicas e analisa duas alternativas: ALTERNATIVA 1: Construção de um galpão em concreto armado, com custo inicial de $ ,00 e vida útil estimada de 20 anos, ao final dos quais poderá ser vendido por $20.000,00. Seus custos anuais de manutenção estão orçados em $5.000,00. ALTERNATIVA 2: Construção de um galpão em alvenaria, com custo inicial de $ ,00 e vida útil estimada de 20 anos. Seu valor residual é de $15.000,00 e seus custos anuais de manutenção foram orçados em $10.000,00. Analise as duas alternativas e proponha uma sistemática que oriente o processo de tomada de decisão. 168

169 LISTA 2 Exercício 2.6 Em conseqüência do sucesso de sua nova linha de produtos, a empresa FINPUC se vê obrigada a expandir seu parque industrial. O departamento de Engenharia acaba de apresentar duas propostas alternativas para essa expansão: realizá-la em fases, adaptando-se pouco a pouco ao crescimento da demanda, ou realizá-la imediata e integralmente. Sempre segundo o Departamento de Engenharia, a opção da expansão total requer um investimento inicial de $ ,00, enquanto o programa em fases requer $ ,00 agora, $ ,00 em 5 anos e outros $ ,00 no final do plano de expansão, daqui a 10 anos. 169

170 LISTA 2 Exercício 2.6 Se for escolhido o plano de expansão total, estima-se que as despesas anuais de manutenção serão, relativamente à expansão em fase, maiores em $40.000,00 nos 5 primeiros anos e em $20.000,00 nos últimos 5 anos. Não foram encontradas outras diferenças significativas entre as duas alternativas. Utilizando os métodos do VPL e da TIR, analise essas alternativas e faça um relatório que auxilie a direção na escolha do processo de expansão a ser implementado. 170

171 LISTA 2 Exercício 2.7 Na venda de um barco, o vendedor oferece duas opções a seus clientes: OPÇÃO 1: $ ,00 de entrada mais duas parcelas semestrais, sendo a primeira de $ ,00 e a segunda de $ ,00. OPÇÃO 2: Sem entrada, sendo o pagamento efetuado em 4 parcelas trimestrais: $ ,00 nas duas primeiras e $ ,00 nas duas últimas. Analise as duas alternativas e estabeleça uma sistemática que oriente o processo de tomada de decisão. 171

172 LISTA 2 Exercício 2.8 Uma construtora analisa a viabilidade de realizar um investimento de $ ,00, dos quais $ ,00 serão gastos na compra de um terreno e o restante na construção de um prédio. A vida útil prevista para o prédio é de 15 anos, ao final dos quais ele não terá valor residual. Estima-se ainda que o prédio poderá ser alugado por $40.000,00 por ano, e que serão gastos $12.000,00 anuais na sua manutenção. A estimativa mais razoável é a de vender o terreno após 15 anos por $ ,00. Supondo-se depreciação linear e uma taxa de Imposto de Renda de 30% ao ano, determinar a taxa de retorno proporcional por este investimento. 172

173 LISTA 2 Exercício 2.9 Pesquisas feitas sobre dois tipos de caminhão revelaram os seguintes dados econômicos: Preço do caminhão a diesel: $ ,00 Preço do caminhão a gasolina: $ ,00 Os dois caminhões têm uma vida útil de 5 anos, ao final da qual terão um valor residual igual a 50% de seus valores de compra. O caminhão a diesel apresentará despesas de operação, manutenção e seguros de $50.000,00 no 1 ano, as quais aumentarão de $10.000,00, a cada ano seguinte. As despesas do caminhão a gasolina serão sempre 30% maiores do que as do caminhão a diesel, e ambos proporcionarão economias de transporte da ordem de $ ,00 por ano. 173

174 LISTA 2 Exercício 2.9 PEDE-SE: a. Utilizando os métodos do VPL, da TIR e do payback, analise essas duas alternativas e faça um relatório que auxilie a direção na escolha do caminhão. b. Supondo depreciação linear e uma taxa do I.R. de 30% ao ano, incorpore os efeitos do Imposto de Renda às duas alternativas e faça um novo relatório à direção. 174

175 LISTA 2 Exercício 2.10 A empresa KAN precisa adquirir um novo torno, e está em dúvida entre um modelo mecânico e um modelo hidráulico. O torno mecânico tem um custo inicial de $ ,00, proporciona recebimentos anuais de $29.000,00 a partir do 4 ano e exige custos anuais de manutenção de $2.000,00 durante toda a sua vida útil, que é de 10 anos. Seu valor residual é de ($5.000,00), pois além da empresa não conseguir um valor de venda para o torno, ela ainda deverá pagar para retirá-lo. O torno hidráulico, por sua vez, apresenta um custo inicial de $ ,00, proporciona recebimentos anuais de $20.000,00 também a partir do 4 ano, e tem custos anuais de manutenção de $1.000,00 durante toda sua vida útil (10 anos), ao final da qual estima-se que ele terá um valor residual de $10.000,

176 LISTA 2 Exercício 2.10 PEDE-SE: a. Faça um relatório que auxilie a direção na escolha da alternativa mais vantajosa economicamente para a empresa. b. Supondo depreciação linear e uma taxa de I.R. de 30% ao ano, incorpore os efeitos do Imposto de Renda às duas alternativas e faça um novo relatório à direção. 176


Carregar ppt "ENGENHARIA ECONÔMICA E ANALISE MULTICRITERIAL Francisco José Kliemann Neto, Dr. Programa de Pós-Graduação em Engenharia de Produção."

Apresentações semelhantes


Anúncios Google