A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

1  O que é Estatística, afinal de contas? Estatística é o ramo da Matemática que estuda métodos para:  Coletar,  Organizar,  Apresentar e  Analisar.

Apresentações semelhantes


Apresentação em tema: "1  O que é Estatística, afinal de contas? Estatística é o ramo da Matemática que estuda métodos para:  Coletar,  Organizar,  Apresentar e  Analisar."— Transcrição da apresentação:

1 1  O que é Estatística, afinal de contas? Estatística é o ramo da Matemática que estuda métodos para:  Coletar,  Organizar,  Apresentar e  Analisar dados. Com o objetivo de desenvolver ferramentas que auxiliem a tomada de decisões.

2 2  Os dados podem ter duas formas: 1. Categorias Ordinais ou Nominais 2. Numéricos Discretos ou Contínuos

3 3  Dados Bruto  Rol  Amplitude Total  Base de Dados é uma coleção de observações  Observações é um conjunto de valores de um mesmo indivíduo ou objeto.  Variável é uma seqüência de medidas de uma mesma característica.  Dados é o valor assumido da variável de uma observação. Conceitos

4 4  População é o conjunto formado por indivíduos ou objetos que tem pelo menos uma variável comum e observável.  Amostra é qualquer subconjunto de uma população Conceitos

5 5 Formas de Representação de Dados Os dados coletados em uma pesquisa podem ser representados por meio de:  Tabelas (normalmente banco de dados)  Gráficos Ex.: Gráficos de Barras, Pizza, Diagrama de Pareto, etc...

6 6 Tabelas

7 7 Gráficos de Barras

8 8 Gráficos de Setores

9 9 Organização de Dados Numéricos Dados Numéricos Diagramas de folhas Ordenados Distribuições Polígonos Tabelas Histogramas

10 10 Distribuição de Frequências  Forma de representar dados ou categorias a partir das quantidades de cada uma das suas classes  Tabelas de distribuição acumulada  Histogramas

11 11 Distribuição de Frequências

12 12 Distribuição de Frequências

13 13 Frequência Cumulativa

14 14 Medidas de Posição As medidas de Posição (ou de Tendência Central) são medidas que procuram representar, quando organizados em ordem crescente (ou decrescente) os termos centrais de uma amostra.  As principais medidas de posição são:  Média Aritmética  Mediana  Moda

15 15 Média Aritmética Considere um conjunto de dados (x 1, x 2, x 3,..., x i,..., x n ) a média aritmética entre esses números é dada por

16 16 Mediana Considere um conjunto com n números organizado em ordem crescente (ou decrescente) a mediana desse conjunto é Se n é ímpar então a mediana é Se n é par então a mediana é

17 17 Moda Considere um conjunto com n números, dizemos que a moda é o número mais frequente. Observações: (1) Podemos ter mais de uma moda. (2) Podemos não ter moda.

18 18 Medidas de Dispersão Medidas de dispersão objetivam mensurar a regularidade de um conjunto de números. Algumas Medidas de Dispersão • Amplitude • Desvio Médio Absoluto • Variância • Desvio Padrão

19 19 Amplitude É a diferença entre o maior número e o menor número do conjunto. Vantagens X Desvantagens

20 20 Desvio Absoluto Considere um conjunto de dados (x 1, x 2, x 3,..., x i,..., x n ) com média o desvio médio absoluto será dado por

21 21 Variância Considere um conjunto de dados (x 1, x 2, x 3,..., x i,..., x n ) com média a variância será dado por

22 22 Desvio Padrão Considere um conjunto de dados (x 1, x 2, x 3,..., x i,..., x n ) com média o desvio padrão será dado por

23 23 Distribuições Discretas São exemplos de distribuições discretas Distribuição Uniforme Distribuição Binomial

24 24 Distribuições Contínuas São exemplos de distribuições discretas Distribuição Uniforme Distribuição Normal Distribuição Exponencial

25 25 Valor Esperado e Variância de uma Distribuição Valor esperado de uma distribuição Variância de uma distribuição

26 26 Distribuição Binomial Se p é a probabilidade de um evento acontecer em uma única tentativa ( sucesso ) e q = 1 – p é a de que o evento não ocorra ( insucesso ), então a probabilidade do evento ocorrer exatamente X vezes, em N tentativas é dado por: Média = µ = np Variância = σ 2 =npq Desvio padrão = σ =

27 27 Distribuição Normal Distribuição de probabilidade contínua cuja função é Com média µ e desvio padrão σ.

28 28 Gráfico da Distribuição Normal

29 29 Conceito Amostragem é o processo de seleção de um conjunto de indivíduos pertencente a uma população, de modo que as características dessa população possa ser estudada através dessa seleção. Uma amostra pode ser selecionada com reposição ou sem reposição.

30 30 Conceito População e Amostra Qualquer conjunto de elementos ou indivíduos apresentando uma característica comum, toma o nome de população. Fixada uma população, qualquer conjunto constituído unicamente por elementos dessa população é denominada amostra dessa população.

31 31 Conceito Sendo • N número de elementos na população • n número de elementos na amostra. O número de amostras, com reposição, de tamanho n que podemos obter de uma população de N  n elementos é N n. O número de amostras, sem reposição, de tamanho n que podemos obter de uma população de elementos é

32 32 Vantagens de Censos Estudo de populações muito pequenas Informações requeridas para pequenas áreas geográficas ou classificações muito detalhadas Permite construção de cadastros

33 33 Vantagens da Amostragem Custo menor Velocidade maior Tempo menor Precisão controlada Redução da carga de coleta sobre unidades da população Necessidades especializadas

34 34 Obtenção de uma Amostra Os passos principais para a obtenção de uma amostra são • Definição de OBJETIVOS e RECURSOS • Obtenção do CADASTRO • Planejamento e SELEÇÃO da amostra • ESTIMAÇÃO das quantidades de interesse • AVALIAÇÃO da qualidade das estimativas

35 35 Tipos de Amostras As amostras podem ser probabilísticas ou não probabilísticas Dentre as amostras probabilísticas podemos ter Aleatórias Sistemáticas Estratificadas Conglomeradas (Clusters)

36 36 Amostra Aleatória simples Uma amostra de uma população é denominada aleatória simples quando é escolhida ao acaso (sem a adoção de nenhum critério prévio) dentro da população. Essa seleção pode ocorrer com ou sem reposição do elemento.

37 37 Amostras Sistemáticas Uma amostra de uma população é denominada sistemática quando dividimos a população em subconjuntos e dentro de cada subconjunto os elementos são escolhidos ao acaso. Note que essa forma de obter amostras é similar à aleatória simples.

38 38 Amostras Extratificadas Uma amostra de uma população é denominada estratificada quando dividimos a população em subconjuntos, porém agora seguindo algum critério e, dentro de cada subconjunto os elementos são escolhidos ao acaso. Note que essa forma de obter amostras difere da sistemática por existir um critério para a divisão da população.

39 39 Amostras Cluster Uma amostra de uma população é denominada estratificada quando dividimos a população em subconjuntos, porém agora seguindo diversos critérios e, dentro de cada subconjunto os elementos são escolhidos ao acaso. Note que essa forma de obter amostras difere da estratificada por existirem diversos critérios para a mesma divisão da população.

40 40 Inferência Estatística Consiste no estudo do comportamento da população e suas características, através de amostras extraídas dessa população. Tais amostras devem ser relacionadas de modo a preservar as mesmas características e comportamento da população.

41 41 Estimação Processo de generalizar a informação da amostra para a população da qual foi tirada Estimador é a expressão matemática do processo de cálculo das estimativas Estimativa é o valor de um estimador calculado com a amostra observada para estimar a quantidade populacional de interesse

42 42 Distribuição por Amostragem Considere-se uma amostra aleatória simples de tamanho n: X 1, X 2,..., X n proveniente de uma população definida pela variável aleatória X, com função de distribuição F(X). Chama-se estatística dessa amostra a qualquer função g(X 1, X 2,..., X n ), dos seus valores X 1, X 2,..., X n. Quando se consideram todas as realizações da amostra, os valores das estatísticas mencionadas definem uma distribuição de probabilidade que coincide com aquela da variável aleatória g(X 1, X 2,..., X n ), que se denomina distribuição por amostragem da característica g(X 1, X 2,..., X n ).

43 43 Distribuição por Amostragem Seja uma amostra de um universo X com média µ e variância σ 2. Seja a média amostral de uma amostra aleatória de tamanho n, então:

44 44 Teste de Hipótese Teste de Hipótese é um conjuntos de procedimentos que permitem verificar a validade ou não de uma suposição sobre uma população. A base para essa verificação são as informações fornecidas por uma amostra aleatória. Formulada uma hipótese sobre a população são obtidas as informações através de uma amostra aleatória.

45 45 Hipóteses Hipótese Básica ou hipótese nula é a hipótese a ser validada pelo teste – H 0 Hipótese alternativa é a hipótese contraria a hipótese nula – H 1 Erro do primeiro tipo : Rejeitar a hipótese nula quando ela for verdadeira. Erro do segundo tipo : Aceita a hipótese nula quando ela for falsa.

46 46 Hipóteses O nível de significância: é a probabilidade do erro do primeiro tipo P(aceita H 1 /H 0 verdadeiro ) = α Grau de confiança do teste: é a probabilidade de aceitar a hipótese nula, quando ela for verdadeira P(H 0 /H 0 )= 1  α Probabilidade de ocorrência do erro do segundo tipo: é a probabilidade de aceitar a hipótese nula quando ela for falsa P(H 0 /H 1 ) = β

47 47 Avaliações DecisãoH 0 :verdadeiraH 0 :falsa Aceitar H 0 Decisão correta P(H 0 /H 0 )=1 α Erro tipo II P(H 0 /H 0 )= β Rejeitar H 0 Erro tipo I P(H 0 /H 0 )= α Decisão correta P(H 0 /H 0 )=1 β

48 48 Testes paramétricos Teste de média. H 0 ) µ = µ 0 H 1 ) µ  µ 0 O estimador ótimo do parâmetro θ da população, no caso µ, permitirá medir a divergência entre as informações da amostra e o verdadeiro valor do parâmetro do universo. O estimador ótimo de µ é

49 49 Critérios de Decisão Realizada a amostra de tamanho n, calculamos que é o valor observado de Se L 1 < < L 2 ⇒ Aceita-se H 0, com um nível de significância α. Se [ L1 ; L2 ] ⇒ Rejeita-se H0

50 50 Testes Paramétricos Teste de média. H 0 ) µ = µ 0 H 1 ) µ < µ 0 Se > L ⇒ Aceita-se H 0, com um nível de significância α. Se < L ⇒ Rejeita-se H0

51 51 Testes Paramétricos Teste de média. H 0 ) µ = µ 0 H 1 ) µ > µ 0 Se < L ⇒ Aceita-se H 0, com um nível de significância α. Se > L ⇒ Rejeita-se H0

52 52 Coeficiente de Correlação Mede o Grau de relação linear entre variáveis, em que e Com

53 53 Análise de Regressão Estuda a relação entre duas ou mais variáveis. É sempre interessante conhecer os efeitos que algumas variáveis exercem, ou parecem exercer, sobre outras. Genericamente, tais relações podem ser representadas por Y = f(X 1, X 2,..., X n ) Y representa a variável dependente ou resposta X i representam as variáveis independentes ou explicativas

54 54 Modelo Matemático Sejam duas variáveis X e Y relacionadas por uma função matemática Y = f (X). Dado um conjunto de valores X e os correspondentes X i valores de Y i = f(X i ). Se colocarmos os pontos P i (X i, Y i ) em um gráfico, verificamos que eles pertencem à curva que relaciona as duas variáveis. A isto chamamos de Modelo Matemático

55 55 Modelo Estatístico Dado um conjunto de pares de valores (X i, Y i ). Quando marcamos os pontos em um gráfico, obtemos não uma curva, mas uma “Nuvem”de pontos Chamamos a isto de Modelo Estatístico Representamos por Y i = f(X i ) + e i e i é denominado erro estocástico Erros de mensuração da variável dependente Influência de outros fatores além dos considerados no modelo adotado.

56 56 Regressão Linear Se admitirmos que Y é função linear de X, então Y i = a + bX i + e i a: coeficiente linear da reta b: coeficiente angular da reta

57 57 Estimativa dos Parâmetros Para cada par de valores o desvio é dado por MMQ para estimar parâmetros. Queremos minimizar a soma dos quadrados dos desvios, isto é,

58 58 Calculando as derivadas parciais de Z com relação a X e Y e igualando-as a zeros obtemos o sistema Resolvendo esse sistema obteremos as estimativas dos parâmetros.


Carregar ppt "1  O que é Estatística, afinal de contas? Estatística é o ramo da Matemática que estuda métodos para:  Coletar,  Organizar,  Apresentar e  Analisar."

Apresentações semelhantes


Anúncios Google