A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Estatística Prof. Edson Nemer Site: www.professornemer.com.

Apresentações semelhantes


Apresentação em tema: "Estatística Prof. Edson Nemer Site: www.professornemer.com."— Transcrição da apresentação:

1 Estatística Prof. Edson Nemer Site:

2 Ementa Introdução a Estatística Medidas de Tendência Central Medidas de Dispersão Revisão de Análise Combinatória Probabilidade Distribuição Normal Intervalo de Confiança

3 Exemplos:

4 Exemplo 2: Calcule a amplitude das séries: Amplitude total É uma medida de dispersão dada pela diferença entre o maior e o menor valor da série. Solução: R = 38 – 10 = 28 A utilização da amplitude total como medida de dispersão é limitada, pois, sendo uma medida que depende apenas dos valores externos, não capta possíveis variações entre esses limites. a)20, 20, 20R = = 0 R = = 20 b)15, 10, 20, 25, 30 Exemplo 3: Calcule a amplitude das séries: a)10, 5, 5, 5, 0 R = = 10 b)10, 10, 5, 0, 0 Média = 5 R = = 10Média = 5

5 Considere as séries abaixo: 1)0, 5, 5, 5, 10 R = = 10 2)0, 0, 5, 10, 10 Média = 5 R = = 10Média = Σ distancia = (-5) + 5 = 0 (zero) Σ distancia = (-5) + (-5) = 0 (zero) Σ distancia 2 = (-5 ) = 50 Σ distancia 2 = (-5) 2 + (-5) = 100 Σ distancia 2 = (-5 ) = 50

6

7

8

9 Variância amostral Como se deseja medir a dispersão dos dados em relação à média, é interessante analisar os desvios de cada valor (x i ) em relação à média: Se os (d i ) forem baixos, teremos pouca dispersão, ao contrário, se os desvios forem altos, teremos elevada dispersão. Conforme visto anteriormente, a soma dos desvios em torno da média é zero, ou seja: Portanto, no cálculo da variância, usaremos o quadrado dos desvios:

10 Variância amostral Para dados agrupados, tem-se que: ou Formas práticas Quanto maior o valor de S 2, maior a dispersão dos dados amostrais.

11 Variância amostral Solução: Observando que a média amostral é: A variância amostral será:

12 Desvio padrão amostral Como visto anteriormente, o cálculo da variância é obtido pela soma dos quadrados dos desvios em relação à média. Assim, se a variável sob análise for medida em metros, a variância deverá ser expressa em m 2 ; se for em anos, anos 2 ; se for em segundos, segundos 2. Ou seja, a variância é expressa pelo quadrado da unidade de medida da variável que está sendo calculada. Para melhor interpretar a dispersão de uma variável, calcula=se a raiz quadrada da variância, obtendo-se o desvio padrão que será expresso na unidade da medida original. O desvio padrão das cinco medidas é: Solução:

13 Variância amostral e Desvio padrão amostral Solução: Vamos construir a tabela abaixo para facilitar a resolução do exercício:

14 Variância amostral e Desvio padrão amostral A média amostral é: anos A variância amostral é: anos

15 Coeficiente de Variação de Pearson É uma medida relativa de dispersão. Enquanto a amplitude total (R), variância (S 2 ) e o desvio padrão (S) são medidas absolutas de dispersão, o coeficiente de variação (C.V.) mede a dispersão relativa. Suponha que os dois personagens abaixo tivessem que pagar R$ 10,00. Qual dos dois gastaria mais? Agora, qual dos dois sentiria mais efetuar esse pagamento ?

16 Coeficiente de Variação de Pearson É uma medida relativa de dispersão. Enquanto a amplitude total (R), variância (S 2 ) e o desvio padrão (S) são medidas absolutas de dispersão, o coeficiente de variação (C.V.) mede a dispersão relativa. Abaixo, temos algumas regras empíricas para interpretação do coeficiente de variação: Se: C.V. < 15%tem-se baixa dispersão Se: 15% < C.V. < 30%tem-se média dispersão Se: C.V. > 30%tem-se elevada dispersão

17 Observe que as idades dos homens variam menos, relativamente falando, que as idades das mulheres. Logo, as idades dos homens se concentram mais em torno da média do que as idades das mulheres.


Carregar ppt "Estatística Prof. Edson Nemer Site: www.professornemer.com."

Apresentações semelhantes


Anúncios Google