A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Aula 9 – Conceitos de Matemática Financeira Material Elaborado por Betânia Peixoto.

Apresentações semelhantes


Apresentação em tema: "Aula 9 – Conceitos de Matemática Financeira Material Elaborado por Betânia Peixoto."— Transcrição da apresentação:

1 Aula 9 – Conceitos de Matemática Financeira Material Elaborado por Betânia Peixoto

2 Conceitos de Matemática Financeira São conceitos essenciais para o cálculo do retorno econômico.

3 Plano de Aula Apresentar os seguintes conceitos de matemática financeira: Fluxo de Caixa Taxa de juros Valor Presente Líquido (VPL) Taxa Interna de Retorno (TIR)

4 Fluxo de Caixa É uma forma matemática para representar graficamente as entradas e saídas de um investimento e/ou aplicação financeira, com o objetivo de facilitar o estudo de seus efeitos Por convenção, é representado por um gráfico com linha horizontal que indica o tempo e com setas para cima (que indica entrada - positivo) e para baixo (que indica saída - negativo).

5 Exemplos de fluxos de caixa Saídas (-) Entradas (+) Saídas (-) tempo

6 Taxa de Juros Os Juros representam a remuneração do Capital empregado em alguma atividade. O percentual desta remuneração em relação ao capital inicial é a taxa de juros. É a remuneração pela privação ao consumo. A maioria das pessoas prefere o consumo hoje estando disposta a pagar um preço por isto. Quem é capaz de esperar para consumir no futuro (seja investindo em um negócio, seja poupando) deve ser recompensado por esta abstinência.

7 Representação da Taxa de Juros É expressa da forma percentual em seguida do período de tempo a que se refere: Ex: 5 % a.a. - (a.a. significa ao ano). 2 % a.m. - (a.m. significa ao mês). Pode também ser de forma unitária =taxa percentual dividida por 100, sem o símbolo %: Ex: 0,02 a.d. - (a.m. significa ao dia). 0,14 a.t. - (a.t. significa ao trimestre)

8 Juros simples Os juros de cada intervalo de tempo sempre são calculados sobre o capital inicial emprestado ou aplicado. M = P. ( 1 + ( i. n ) ) M= montante final P = capital inicial i = taxa de juros n = número de períodos

9 Juros compostos Os juros de cada intervalo de tempo são calculados a partir do capital inicial acrescido do juros do período anterior. Ex: Aplicação de um capital P por 3 meses. 1º mês: M =P.(1 + i) 2º mês: M = P. (1 + i).(1 + i) 3º mês: M = P.(1 + i).(1 + i).(1 + i) Assim: M = P. (1 + i) n

10 Exemplo Suponha que voce vai comprar um carro de ,00 reais financiado em 12 meses. A taxa de juros proposta foi de 1% am. Ao final, qual o valor que voce terá pago pelo carro?  M t=1 = *(0,01) = =  M t=2 = *(0,01) = = …  M t=12 = , ,31*(0,01) = ,50 Ou M=20.000*(1+0,01) 12 = ,50

11 Cuidado Os períodos da taxa e o do tempo do investimento devem ser iguais Por exemplo, se a taxa é mensal, o período de tempo do investimento deve ser descrito em meses.

12 De taxa anual para taxa mensal Se um investimento for feito num período inferior a 1 ano e a taxa de juros for anual, podemos transformar o período do investimento em ‘anos’. Como? Ex: se o período fosse de 3 meses:  12 meses ano  3 meses x ano  x = 3 / 12 = ¼ de ano Esta lógica pode ser aplicada para transformação de qualquer período de tempo do investimento

13 Valor Presente e Valor Futuro ‘Valor Presente’ = valor investido hoje ou o capital inicial [VP] ‘Valor Futuro’ = o montante a ser recebido após o período do investimento [VF] VF=VP*(1+i) n

14 Valor Presente e Valor Futuro- Exemplo √ Se investirmos R$ 250 por um ano a uma taxa de juros de 12% ao ano, quanto teremos no final do período? √ VF = VP*(1+i) n √ VF = 250*(1+0,12) = R$280

15 Em resumo: Se realizamos um investimento hoje por n períodos, sendo a taxa de juros definida em i% por período, teremos ao final um total de: Valor futuro Valor Presente Número de períodos VF = VP x (1+i) n Taxa de juros

16 Em um projeto social... Os valores dos recebimentos e pagamentos relativos a um projeto estão distribuídos ao longo do tempo. Esses valores, no entanto, não podem ser prontamente comparados visto que estão avaliados em momentos diferentes no tempo. “Receber R$100 hoje é, provavelmente, diferente de receber R$100 daqui a 3 meses”. Como então comparar valores?

17 Valor Presente Líquido (VPL) Idéia: “trazer” esses valores todos para uma mesma data, por exemplo, para a data relativa ao início do projeto. Em outros termos, calcular o ‘valor presente’ do investimento. Obs: ‘Líquido’  porque trazemos para valor presente recebimentos e pagamentos.

18 Como fazer Da mesma maneira que acrescentamos juros quando queremos saber o VF de um investimento realizado hoje, quando calculamos o valor presente desse retorno futuro do investimento temos que descontar os juros. Quando temos um fluxo de pagamentos e recebimentos, precisamos trazer para a mesma data cada uma das parcelas: se trouxermos todos para o 1º período, temos o VPL.

19 Valor Presente Líquido (VPL) - definição É o valor descontado de todos os fluxos de caixa esperados (receitas menos despesas). Quanto vale hoje todos os pagamentos e recebimentos que serão realizados ao longo do tempo?

20 Exemplo: t = 0 t = t = 2t = 3 t = 4 Considere o seguinte fluxo de caixa de um projeto social:

21 Outro exemplo: Ano Valor ($) Os custos de um projeto estão distribuídos ao longo dos dois primeiros anos do projeto. Por outro lado, há recebimentos por 3 anos consecutivos, conforme tabela abaixo: Qual é o valor presente líquido do projeto (i=15% ao ano)?

22 Taxa Interna de Retorno (TIR) É a taxa de juros (ou desconto) que faz com que o VPL de um projeto seja zero. VPL igual a zero significa que os custos avaliados no tempo zero são iguais aos benefícios, também avaliados no tempo zero. Idéia: você quer descobrir qual a taxa de juros que está embutida no seu investimento, isto é, qual a taxa de juros que a partir do seu investimento inicial gerou as entradas futuras do seu fluxo de caixa.

23 Retomando o exemplo anterior (i= ? %) : Ano Valor ($) Como o fluxo está em anos, a TIR calculada será uma taxa anual. Para fazer o cálculo, vamos utilizar o Excel – o cálculo “algébrico” só pode ser feito por aproximação.

24 Comentários Finais Aula de hoje: trabalhamos os conceitos da matemática financeira, em especial os conceitos de valor presente líquido e taxa interna de retorno. Próxima aula: a partir destes dois conceitos realizaremos a avaliação de retorno econômico.


Carregar ppt "Aula 9 – Conceitos de Matemática Financeira Material Elaborado por Betânia Peixoto."

Apresentações semelhantes


Anúncios Google