A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

ANÁLISE ESTATÍSTICA II 1 Variáveis 1) Variáveis discretas – São aquelas que caracterizam valores que podem ser contados. Ex.: Número de pessoas que acessam.

Apresentações semelhantes


Apresentação em tema: "ANÁLISE ESTATÍSTICA II 1 Variáveis 1) Variáveis discretas – São aquelas que caracterizam valores que podem ser contados. Ex.: Número de pessoas que acessam."— Transcrição da apresentação:

1 ANÁLISE ESTATÍSTICA II 1 Variáveis 1) Variáveis discretas – São aquelas que caracterizam valores que podem ser contados. Ex.: Número de pessoas que acessam um caixa eletrônico em uma determinada data e horário. Exemplos de distribuição de probabilidades discretas Binomial Poisson Hipergeométrica

2 ANÁLISE ESTATÍSTICA II 2 2) Variáveis contínuas – São aquelas que caracterizam um processo de medição, podendo assumir qualquer valor num intervalo contínuo. Ex.: Temperatura de uma peça Exemplos de distribuição de probabilidades contínuas Normal Uniforme Exponencial

3 ANÁLISE ESTATÍSTICA II 3 DISTRIBUIÇÃO NORMAL Também chamada de distribuição de Gauss. É a distribuição contínua mais utilizada no estudo da estatística. Sua utilização se deve ao fato da maioria das variáveis serem poderem ser caracterizadas por sua distribuição e por poder ser utilizada para fazer aproximações para várias distribuições de probabilidades discretas.

4 ANÁLISE ESTATÍSTICA II 4 DISTRIBUIÇÃO NORMAL Propriedades: 1. Simétrica 2. Apresenta um formato de sino 3. Sua amplitude é infinita 4. Suas medidas de tendência central são coincidentes, ou seja, média, mediana e moda 5. É fortemente caracterizada por sua média μ e seu desvio padrão σ

5 ANÁLISE ESTATÍSTICA II 5 DISTRIBUIÇÃO NORMAL Variando-se a média e o desvio padrão, obtém-se diferentes distribuições normais.

6 ANÁLISE ESTATÍSTICA II 6 DISTRIBUIÇÃO NORMAL A variação da média μ desloca a distribuição para a direita ou para a esquerda. A variação do desvio padrão σ altera a amplitude da distribuição.

7 ANÁLISE ESTATÍSTICA II 7

8 8

9 9 DISTRIBUIÇÃO NORMAL A probabilidade de qualquer valor individual é zero.

10 ANÁLISE ESTATÍSTICA II 10

11 ANÁLISE ESTATÍSTICA II 11 DISTRIBUIÇÃO NORMAL Ex.: Seja X normalmente distribuída, com média igual a 100 e desvio-padrão igual a 50. Calcule o valor de Z para X igual 200.

12 ANÁLISE ESTATÍSTICA II 12 DISTRIBUIÇÃO NORMAL Ex.: Seja X normalmente distribuída, com média igual a 100 e desvio-padrão igual a 50. Calcule o valor de Z para X igual 200. O resultado significa que X = 200 está 2,0 desvios-padrão (2,0 incrementos de 50 unidades) acima da média 100

13 ANÁLISE ESTATÍSTICA II 13 DISTRIBUIÇÃO NORMAL

14 ANÁLISE ESTATÍSTICA II 14 DISTRIBUIÇÃO NORMAL Função Densidade de Probabilidade Normal Padronizada: Onde Z é qualquer valor na distribuição normal padronizada (valores acima da média são positivos e valores abaixo da média são negativos

15 ANÁLISE ESTATÍSTICA II 15 DISTRIBUIÇÃO NORMAL A área total sob a curva é 1, com metade desse valor acima da média e metade abaixo.

16 ANÁLISE ESTATÍSTICA II 16

17 ANÁLISE ESTATÍSTICA II 17

18 ANÁLISE ESTATÍSTICA II 18

19 ANÁLISE ESTATÍSTICA II 19 DISTRIBUIÇÃO NORMAL EXERCÍCIOS: 1) Considere uma distribuição normal padronizada, com média aritmética igual a zero e desvio-padrão igual a um. Qual é a probabilidade de que Z seja menor que 1,59? Qual é a probabilidade de que Z seja maior que 1,68? Qual é a probabilidade de que Z esteja entre 1,59 e 1,68? Qual é a probabilidade de que Z esteja entre -1,59 e 1,68? Entre que dois valores de Z (simetricamente distribuídos em torno da média aritmética) estarão contidos 68,26% de todos os valores possíveis de Z?

20 ANÁLISE ESTATÍSTICA II 20 DISTRIBUIÇÃO NORMAL 2) Considere uma distribuição normal padronizada. Qual é o valor de Z para uma probabilidade: menor que 95%? maior que 90%?

21 ANÁLISE ESTATÍSTICA II 21 DISTRIBUIÇÃO NORMAL 3) Em um curso de Estatística, um conjunto de notas de provas finais foi considerado como normalmente distribuído, com uma média igual a 6,7 e um desvio-padrão igual a 1,8.  Qual é a probabilidade de se obter uma nota maior do que 7,4 nessas provas?  Qual é a probabilidade de se obter uma nota igual ou menor do que 9,0?  Que percentagem de alunos tirou entre 5,3 e 8,9?  Apenas 5% dos alunos que fizeram essas provas obtiveram pontuação mais alta de que nota?

22 ANÁLISE ESTATÍSTICA II 22 DISTRIBUIÇÃO NORMAL 4) Considere uma distribuição normal, com média igual a 85 e desvio-padrão igual a 17. Qual é o valor de X para uma probabilidade: menor que 99%? maior que 80%?

23 ANÁLISE ESTATÍSTICA II 23 DISTRIBUIÇÃO NORMAL 5) Os salários dos gerentes de bancos se distribuem normalmente, com média de $ e desvio-padrão de $ Qual é a percentagem de gerentes que recebem:  menos de $ ?  entre $ e $ ?


Carregar ppt "ANÁLISE ESTATÍSTICA II 1 Variáveis 1) Variáveis discretas – São aquelas que caracterizam valores que podem ser contados. Ex.: Número de pessoas que acessam."

Apresentações semelhantes


Anúncios Google