A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

1 Sumário Teoria da utilidade Bens complementares Bens substitutos Recta orçamental.

Apresentações semelhantes


Apresentação em tema: "1 Sumário Teoria da utilidade Bens complementares Bens substitutos Recta orçamental."— Transcrição da apresentação:

1 1 Sumário Teoria da utilidade Bens complementares Bens substitutos Recta orçamental

2 2 Teoria da utilidade / CI Vimos que os agentes económicos Confrontam-se com cabazes E que dos seus gostos/preferências resulta uma função de utilidade u: Se A B então u(A) > u(B) que dizer que é melhor que A utilidade é relativa (não tem escala)

3 3 Teoria da utilidade / CI O conjunto de cabazes em que o agente económico está indiferentes ao cabaz A forma uma curva de indiferença A curva de indiferença divide o espaço de cabazes em melhores que A e em piores que A.

4 4 Teoria da utilidade / CI Quais as propriedades das Curvas de indiferença? –São descendentes –Nunca se intersectam –Uma curva localizada à direita e acima (de outra) traduz cabazes melhores

5 5 Teoria da utilidade / CI e.g.1, Sendo o cabaz genérico X = (Q2; Q1) e um indivíduo que está indiferente entre A= (10; 10) e B = (18; 8) e tem curvas de indiferença rectilíneas. a) Num cabaz equivalente a A, quanto tem que aumentar Q2 para Q1 poder diminuir em 1 u.? b) Como esse indivíduo compara o cabaz A ao cabaz C = (30; 0)?

6 6 Teoria da utilidade / CI Como a curva de indiferença é rectilínea, a taxa marginal de substituição é a inclinação da recta. I = (18-10)/(8-10) = -4 a) Temos que aumentar 4 u. de BS2 para diminuir 1 u. do BS1 b) Um cabaz (x, 0) ~ A teria que ser (40; 0) pelo que C é pior que A

7 7 Teoria da utilidade / CI A inclinação da curva de indiferença traduz a taxa marginal de substituição: –Se a taxa marginal for constante, traduz que os bens são perfeitamente substitutos. –Se a taxa marginal variar muito (curvatura elevada), traduz que os bens são perfeitamente complementares

8 8 Bens complementares Vamos imaginar que os sapatos esquerdos são um Bem e os sapatos direitos são outro Bem distinto. As curvas de indiferenças terão grande curvatura –Ter sapatos esquerdos sem direitos não serve para quase nada: nessa parte, a linha é vertical

9 9 Bens complementares

10 10 Bens substitutos Vamos imaginar que as maçãs são perfeitos substitutos das pêras mas que uma maçã é equivalente a duas pêras. A = (maçãs; peras) (0; 1) ~ (2; 0) (0; 3) ~ (2; 2) ~ (4; 1) ~ (6; 0) –Ser perfeito substituto não obriga a uma relação de 1 para 1, i.e., que txs = -1.

11 11 Bens substitutos

12 12 Possibilidades de consumo Vamos imaginar que um náufrago vive numa ilha isolada. E que tem 8h para recolher cocos ou apanhas mexilhões. O que consumir estará sobre a sua fronteira de possibilidades de produção:

13 13 Possibilidades de consumo

14 14 Possibilidades de consumo Quais as quantidades que o náufrago irá produzir (e consumir)? Depende das suas preferências Será o cabaz A, B ou outro?

15 15 Possibilidades de consumo

16 16 Possibilidades de consumo

17 17 Possibilidades de consumo A cabaz C é o que, sendo possível produzir (pertence à FPP), está na curva de indiferença mais à direita e acima É este cabaz C que o náufrago vai produzir (e consumir)

18 18 Recta orçamental Numa economia desenvolvida os indivíduos adquirem os BS pagando um preço A FPP vai ser substituída por uma restrição orçamental: A despesa tem que ser menor ou igual ao dinheiro que tenho

19 19 Recta orçamental Sendo que os preços dos BS1 e BS2 são p1 e p2 Quando eu adquiro as quantidades q1 e q2, A despesa virá dada por Desp = q1.p1 + p2.p2 Dinheiro que tenho

20 20 Recta orçamental Sendo o dinheiro que tenho dado por R, virá q1.p1 + p2.p2 R e.g., eu tenho 3,00, cada côco custa 0,50 e cada mexilhão 0,01. Quais as minhas possibilidades de consumo? Que cabaz vou adquirir?

21 21 Recta orçamental

22 22 Recta orçamental

23 23 Recta orçamental Devido à insaciabilidade, vou adquirir o cabaz C Gasto todo o dinheiro ficando o cabaz sobre a minha recta orçamental: q1.p1 + p2.p2 = R e sobre a curva de indiferença mais à direita e acima possível

24 24 Recta orçamental Devido à insaciabilidade, o indivíduo vai gastar todo o dinheiro ficando o cabaz sobre a recta orçamental q1.p1 + p2.p2 = R

25 25 Recta orçamental Um consumidor tem R = 5,00 e pode adquirir torradas (Pt = 0,75) ou cerveja (Pc = 1,00). a) Trace a recta orçamental b) Que acontece se Pc aumentar para 1,50? c) Que acontece se R aumentar para 6,00? d) Qual a expressão da recta orçamental?

26 26 Recta orçamental

27 27 Recta orçamental d) Qual a expressão da recta orçamental? R = pc.qc+pt.qt Agora vou explicitar a função: qt = R/pt – pc/pt.qc qt = 6,67 – qc/0,75 A inclinação da recta orçamental é dada pelo racio dos preços: px/py

28 28 Recta orçamental A recta orçamental pode ter mudanças de inclinação. Se houver alterações do preço com a quantidade

29 29 Recta orçamental e.g., o consumidor tem R = 5,00 e pode adquirir torradas (Pt = 0,5) ou cerveja. O Pc das duas primeiras cervejas é 1/u. e o preço das seguintes é 0,5.

30 30 Recta orçamental quebrada

31 31 Recta orçamental e.g., o consumidor tem R = 5,00 e pode adquirir torradas (Pt = 0,5) ou cerveja. O Pc de uma cerveja é 1/u. Se comprar mais, o preço será 0,5/u. para todas.

32 32 Recta orçamental descontínua

33 33 Recta orçamental e.g., o consumidor tem R = 5 e outro tem R = 8. O preço das torradas é Pt = 0,5 /u e o das cervejas é Pc = 1/u. Por cada duas cervejas compradas, recebe uma grátis

34 34 Recta orçamental descontínua


Carregar ppt "1 Sumário Teoria da utilidade Bens complementares Bens substitutos Recta orçamental."

Apresentações semelhantes


Anúncios Google