A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

AADAPT Workshop South Asia Goa, December 17-21, 2009 Amostragem para Avaliações do Impacto de Programas Presenters name 1.

Apresentações semelhantes


Apresentação em tema: "AADAPT Workshop South Asia Goa, December 17-21, 2009 Amostragem para Avaliações do Impacto de Programas Presenters name 1."— Transcrição da apresentação:

1 AADAPT Workshop South Asia Goa, December 17-21, 2009 Amostragem para Avaliações do Impacto de Programas Presenters name 1

2 Introdução Como é que desenhamos uma amostra para detectar de uma forma credível um efeito significativo? Em que populações ou grupos estamos interessados e aonde é que conseguimos encontrá-los? Quantas pessoas/empresas/unidades devem ser entrevistadas/analisadas dessa população? De que forma é que o tamanho da amostra afecta o orçamento da avaliação? Atenção! O objetivo desta apresentação não é torná-lo um perito em amostragens O objetivo também não é dar-lhe uma dor de cabeca É mais um overview: De que forma é que as características da amostragem afectam o que é possivel aprender com a avaliação do impacto de um programa? 2

3 Sumário 1.Base da amostragem Que populações ou grupos estamos interessados Como é que conseguimos encontrá-los? 2.Tamanho da amostra Porque é tão importante: confiança nos resultados Determinantes do tamanho apropriado da amostra Outras questões Exemplos 3.Orçamentos 3

4 Base de amostragem Em quem é que estamos interessados? a)Todas as PMEs? b)Todas as PMEs formais? c)Todas as PMEs formais num sector específico? d)Todas as PMEs formais num sector específico numa região em particular? É preciso ter em consideração a validade externa Consegue-se com os resultados da população (c) retirar ilações para programas de apoio a empresas informais noutro sector? Consegue-se com os resultados da população (d) retirar ilações para as políticas públicas do país? Mas é preciso ter em conta a viabilidade e o que queremos saber Pode não ser possível ou desejável fazer um piloto muito genérico de um programa ou de uma política 4

5 Base de amostragem: Encontrar as unidades em que estamos interessados Depende do tamanho e do tipo de experiência Sorteio entre os aplicantes Exemplo: Programa de Serviços de Apoio ao Desenvolvimento de Negócio entre empresas informais de uma área específica Podemos utilizar unidades de tratamento e comparação da pool de aplicantes Se não é possivel (50,000 recebem o tratamento), é necessário uma amostra para medir o impacto Alteração de política Exemplo: Alteração em distritos seleccionados aleatoriamente das regras de registro das empresas Para medir o impacto nos lucros, não se pode criar uma amostra de todos os negócios informais nos distritos de tratamento e de comparação É necessário uma amostra de empresas dentro dos distritos Informação necessária antes da amostragem Listagem completa de todas as unidades de observação disponíveis para amostragem em cada área ou grupo Pode ser complicado para unidades como seja o caso de empresas informais, mas existem técnicas para resolver este problema 5

6 Sumário 1.Base da amostragem Que populações ou grupos estamos interessados Como é que conseguimos encontrá-los? 2.Tamanho da amostra Porque é tão importante: confiança nos resultados Determinantes do tamanho apropriado da amostra Outras questões Exemplos 3.Orçamentos 6

7 Tamanho da amostra e confiança Comece com uma questão mais simples que o impacto do programa Digamos que queremos saber a média dos lucros anuais de uma PME em Dakar Opção 1: Saímos à rua e procuramos 5 empresários, aos quais calculamos a média das suas respostas. Option 2: Obtemos 1000 empresários e calculamos a média das suas respostas. Que média estará mais perto da verdadeira média? 7

8 Tamanho da amostra e confiança: 5 empresas1,000 empresas 8

9 Tamanho da amostra e confiança Da mesma forma, quando calculamos o impacto do programa Necessitamos de muitas observações para dizermos com confiança se o resultado médio do grupo de tratamento é superior/inferior ao do grupo de comparação O que significa com confiança? Minimizar o erro estatístico Tipos de erros Erro tipo 1: Dizemos que há um impacto do programa quando na realidade não existe Erro tipo 1 : Existe um impacto do programa mas não conseguimos detectá-lo 9

10 Tamanho da amostra e confiança Erro tipo 1: Detectar um impacto do programa quando não existe Erro pode ser minimizado depois da recolha de dados, durante a fase de análise estatística Necessário ajustar os níveis de significado das estimativas de impacto (ex. Intervalos de confiança de 99% ou 95%) Erro tipo 2: não se consegue detectar que de facto há um impacto do programa Na gíria: teste estatístico tem um poder baixo Erro tem de ser minimizado antes da recolha de dados Melhor forma de garantir isso: Assegurar que se tem uma amostra suficientemente grande O objetivo da avaliação do impacto do programa é aprender alguma coisa Ex-ante: não sabemos qual a dimensão do impacto do programa Ex-post com poder baixo: Este programa pode ter aumentado os lucros das empresas em 50%, mas não conseguimos distinguir com confiança a diferença entre um aumento de 50% de um aumento de zero 10

11 Calcular o tamanho da amostra Na realidade, há uma formula. Mas não fique assustado. Principais aspectos a ter em conta: 1.Tamanho suficiente para detectar o efeito 2.Probabilidade de erros tipo 1 e tipo 2 3.Variância dos resultado(s) 4.Unidades (empresas, bancos) por área tratada 11

12 Calcular o tamanho da amostra Tamanho suficiente para detectar o efeito O efeito mínimo que queremos distinguir de zero Aumento de 30% nas vendas, uma queda em 25% nos subornos Amostras maiores mais fácil detectar efeitos menores Trabalham as mulheres e os homens o mesmo número de horas? Hipótese: Em média, as mulheres trabalham 40 horas por semana, enquanto que os homens trabalham 44 horas por semana Se estes dados são resultado de uma amostra de 10 mulheres e 10 homens É díficil dizer que são diferentes Sería mais fácil dizer que são diferentes se as mulheres trabalhassem 30 horas por semana e os homens 80 horas por semana Mas se os dados resultam de uma amostra de 500 mulheres e 500 homens Mais provável que sejam de facto diferentes 12

13 Calcular o tamanho da amostra Como é que escolhemos o tamanho do efeito detectável? O efeito mínimo que implicaría uma resposta política O efeito mínimo que permitiria dizer que o programa não foi um falhanço Este programa aumentou as vendas em 40% e este efeito é significativo do ponto de vista estatístico Óptimo - Vamos pensar como é que conseguimos expandi-lo Este programa aumentou as vendas em 10% e este efeito é significativo do ponto de vista estatístico Óptimo….oops..espera aí: gastamos este dinheiro todo e apenas aumentou as vendas 10%? 13

14 Calcular o tamanho da amostra Erro tipo 1 e erro tipo 2 Tipo 1 Nível de significado das estimativas é normalmente estabelecido a 1% ou 5% 1% ou 5% é a probabilidade de não existir impacto no cenário em que acreditamos que encontrámos um efeito Tipo 2 Poder normalmente colocado a 80% ou 90% 20% ou 10% é a probabilidade que haja um efeito que não conseguimos detectar Amostras maiores maior poder 14

15 Calcular o tamanho da amostra Variância dos resultado(s) Menor variância mais fácil detectar a diferença pode-se ter uma amostra menor 15

16 Calcular o tamanho da amostra Variância de resultados Como é que sabemos a variância dos resultados antes de decidirmos o tamanho da amostra e recolhermos os dados? O ideal é dados prévios, mas normalmente ….são não- existentes Pode-se usar dados prévios de uma população semelhante Exemplo: inquéritos a empresas, inquéritos ao mercado laboral Torna isto um pouco um trabalho de adivinhação, não exactamente uma ciência 16

17 Outras questões 1.Braços de tratamento múltiplos 2.Resultados desagregados por grupos 3.Adesão 4.Qualidade dos dados 17

18 Outras questões Braços de tratamento múltiplos Compara-se cada tratamento separadamente com o grupo de comparação Comparar grupos de tratamento implica amostras muito grandes Especialmente se os tratamentos forem parecidos, as diferenças entre os grupos de tratamento serão provavelmente menores De facto, é como corrigir um tamanho do efeito detectável muito pequeno Resultados desagregados por grupos São os efeitos diferentes para homens e mulheres? E para diferentes sectores? Se o sexos/sectores são esperados reagir de uma forma semelhante, então estimar as diferenças no impacto do tratamento também requer amostras muito grandes 18

19 Outras questões Resultados desagregados por grupos Para garantir equilíbrio entre os grupos de tratamento e de comparação, é aconselhavel estratificar a amostra antes de alocar o grupo de tratamento Estratos Sub-populações Estratos habituais: localização, sexo, sector, valores iniciais do resultado de interesse Alocação ao grupo de tratamento(ou amostragem) é efectuada dentro destes grupos 19

20 Porque é que necessitamos de estratos? Exemplo de estratos com base na região = T = C

21 Porque é que necessitamos de estratos? Qual é o impacto numa região em particular? Por vezes é dificil de dizer com confiança

22 Porque é que necessitamos de estratos? Randomização do tratamento dentro das unidades geográficas Dentro de cada tratamento, ½ sera tratada, ½ será do grupo de comparação. Lógica semelhante para sexos, sector, tamanho da empresa, etc

23 Outras questões Adesão Adesão baixa aumenta o tamanho do efeito detectável Só se consegue detectar um efeito se for realmente grande Na prática diminui o tamanho da amostra Exemplo: Oferecer subsídios a PMEs na forma de serviços de apoio ao desenvolvimento do negócio Oferta a 5,000 empresas Apenas 50 participam Provavelmente só se consegue dizer com confiança que há um efeito nas vendas se elas se tornarem parte das empresas do Fortune

24 Outras questões Qualidade dos dados Dados de pouca qualidade aumentam na prática o tamanho da amostra necessário Observações em falta Aumento do ruído Pode ser mitigado em parte com um coordenador no terreno a monitorizar a recolha de dados 24

25 Exemplo do Gana Cálculos podem ser efectuados em vários pacotes estatísticos – e.g. STATA, OD Experiência no Gana para aumentar os lucros de micro-empresas Lucros base – 50 cedi por mês. – Dados dos lucros com ruído, o que leva a que o coeficiente de variação maior >1 seja habitual. Exemplo do código em STATA para detectar um aumento de 10% dos lucros: – sampsi 50 55, p(0.8) pre(1) post(1) r1(0.5) sd1(50) sd2(50) – Ter dados antes e depois da intervenção diminui o tamanho da amostra necessário (pre e post) Resultados – Aumento de 10% (de 50 para 55): 1,178 empresas em cada grupo – Aumento de 20% (de 50 para 60): 295 empresas em cada grupo – Aumento de 50% (de 50 para 75): 48 firms in each group (Mas este efeito não é realista) E se a adesão for apenas de 50% – Oferecemos formação que aumenta os lucros em 20%, mas apenas metade das empresas o cumprem. – Média para o grupo de tratamento = 0.5* *60 = 55 – Equivalente a detectar um aumento de 10% com uma adesão de 100% necessário 1,178 em cada grupo em vez de 295 em cada grupo 25

26 Sumário 1.Base da amostragem Que populações ou grupos estamos interessados Como é que conseguimos encontrá-los? 2.Tamanho da amostra Porque é tão importante: confiança nos resultados Determinantes do tamanho apropriado da amostra Outras questões Exemplos 3.Orçamentos 26

27 Orçamentos O que é necessário? Recolha de dados Empresa de inquéritos Entrada dos dados Coordenador no terreno para garantir que o tratamento está de acordo com o protocolo de randomização e para monitorizar a recolha de dados Análise de dados 27

28 Orçamentos Quanto é que tudo custa? Varia muito. Normalmente depende do Tamanho da amostra Facilidade de encontrar inquiridos Dispersão geográfica dos inquiridos Questões de segurança Empresas formais vs informais Nível de formação do entrevistador Et cetera…. Dados para um inquérito a empresas:$40-350/empresa Dados para um inquérito a lares: $40+/lar Coordenador no terreno: $10,000-$40,000/ano Depende se se consegue um coordenador local Dados administrativos: Normalmente grátis Por vezes tem resultados limitados, pode não ter informação sobre o sector informal 28

29 Em resumo O tamanho da amostra da avaliação do impacto do programa vai determinar quanto é que se pode aprender da experiência Algum bom senso e adivinhação nos cálculos mas é importante despender tempo nestes cálculos Se a amostra é muito pequena: perda de tempo e dinheiro porque não seremos capazes de detectar com confiança um impacto não-nulo Se é posto pouco esforço na amostragem e na recolha de dados: Ver acima. Questões? 29


Carregar ppt "AADAPT Workshop South Asia Goa, December 17-21, 2009 Amostragem para Avaliações do Impacto de Programas Presenters name 1."

Apresentações semelhantes


Anúncios Google