A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Prof. GUIBA 24 de outubro de 2009

Apresentações semelhantes


Apresentação em tema: "Prof. GUIBA 24 de outubro de 2009"— Transcrição da apresentação:

1 Prof. GUIBA 24 de outubro de 2009

2 (UDESC – – adaptada) Suponha que em uma pesquisa envolvendo 660 pessoas, cujo objetivo era verificar o que elas estão lendo, obtiveram-se os seguintes resultados: 100 pessoas lêem somente revistas, 300 pessoas lêem somente livros e 150 pessoas lêem somente jornais. Supõe-se ainda que, dessas 660 pessoas, 80 lêem livros e revistas, 50 lêem jornais e revistas, 60 lêem livros e jornais e 40 lêem revistas, jornais e livros. Em relação ao resultado dessa pesquisa, são feitas as seguintes afirmações: I - Apenas 40 pessoas lêem pelo menos um dos três meios de comunicação citados. II - Quarenta pessoas lêem somente revistas e livros, e não lêem jornais. III - Apenas 440 pessoas lêem revistas ou livros. Assinale a alternativa correta. a) Somente as afirmativas I e III são verdadeiras. b) Somente as afirmativas I e II são verdadeiras. c) Somente as afirmativas I, II e III são verdadeiras. d) Somente a afirmativa II é verdadeira. e) Somente a afirmativa I é verdadeira.

3 Jornais LivrosRevistas

4 I - Apenas 40 pessoas lêem pelo menos um dos três meios de comunicação citados. Errado, pois o total das regiões é 660. II - Quarenta pessoas lêem somente revistas e livros, e não lêem jornais. Correto, pois se 80 pessoas leem revistas e livros, e 40 leem os três meios, então 40 leem revistas e livros, mas não jornais. III - Apenas 440 pessoas lêem revistas ou livros. Errado, pois o total das regiões, exceto a que corresponde a apenas jornal é 510.

5 (UDESC – 2009 – 1 – adaptada) Suponha que em uma pesquisa envolvendo 660 pessoas, cujo objetivo era verificar o que elas estão lendo, obtiveram-se os seguintes resultados: 100 pessoas lêem somente revistas, 300 pessoas lêem somente livros e 150 pessoas lêem somente jornais. Supõe-se ainda que, dessas 660 pessoas, 80 lêem livros e revistas, 50 lêem jornais e revistas, 60 lêem livros e jornais e 40 lêem revistas, jornais e livros. Em relação ao resultado dessa pesquisa, são feitas as seguintes afirmações: I - Apenas 40 pessoas lêem pelo menos um dos três meios de comunicação citados. II - Quarenta pessoas lêem somente revistas e livros, e não lêem jornais. III - Apenas 440 pessoas lêem revistas ou livros. Assinale a alternativa correta. a) Somente as afirmativas I e III são verdadeiras. b) Somente as afirmativas I e II são verdadeiras. c) Somente as afirmativas I, II e III são verdadeiras. d) Somente a afirmativa II é verdadeira. e) Somente a afirmativa I é verdadeira.

6 Uma PA é uma sequência de números em que cada termo, a partir do segundo, é a soma do anterior com uma determinada constante (razão). Ex.: (4, 7, 10, 13,16,...) é uma PA de primeiro termo igual a 4 e razão 3. Ex.: (21, 16, 11, 6, 1, –4, –9,...) é uma PA de primeiro termo igual a 21 e razão –5.

7 Termo geral da PA Se tivermos 3 termos (a,b,c) em PA, afirma-se que A soma dos termos equidistantes do termo central é constante. Representação genérica de PA de 3 termos de razão r.

8 (UDESC – ) Sejam x, y, z números reais tais que a seqüência abaixo, nesta ordem, uma progressão aritmética, então o valor da soma x+y+z é: a) -3/8 b) 21/8 c) 15/8 d) 2 e) -19/8

9 Se a soma dos termos equidistantes é constante, então Além disso, como os termos 1, y e ¼ estão em PA, então Assim,

10 (UDESC – ) Sejam x, y, z números reais tais que a seqüência abaixo formam, nesta ordem, uma progressão aritmética, então o valor da soma x+y+z é: a) -3/8 b) 21/8 c) 15/8 d) 2 e) -19/8

11 A soma do três primeiros termos de uma PA é 27 e o quinto termo também é 27. Determine o sexto termo dessa PA. Resolução: Se os três primeiros termos têm soma 27, então, colocando a forma (x – r, x, x + r), temos que: O segundo termo da PA vale 9. Se o quinto é 27, temos: Se o quinto termo é 27 e a razão 6, o sexto termo é 33. Resposta: O sexto termo é 33.

12 A soma dos termos de uma PA é dada por: Ex.: Calcular a soma dos termos de uma PA de 40 termos, sendo o primeiro igual a –3 e o último, 77.

13 No projeto de uma sala de cinema, um arquiteto desenhou a planta projetando 16 fileiras de poltronas. A primeira terá 20 poltronas, enquanto da segunda em diante, serão duas poltronas a mais que na fileira anterior. Quantas poltronas terá na sala? a) 348 b) 380 c) 420 d) 720 e) 560

14 Pelo enunciado, a fileira 1 tem 20 cadeiras, a 2, 22 cadeiras, a 3, 24 cadeiras, e assim por diante, até a fileira 16, que terá a n poltronas. Logo, temos a seguinte PA, de razão 2 e de 20 termos. Para podermos calcular ainda resta-nos descobrir o termo a 16. Assim, o podemos calcular a soma dos termos da PA, que será o total de poltronas na sala.

15 No projeto de uma sala de cinema, um arquiteto desenhou a planta projetando 16 fileiras de poltronas. A primeira terá 20 poltronas, enquanto da segunda em diante, serão duas poltronas a mais que na fileira anterior. Quantas poltronas terá na sala? a) 348 b) 380 c) 420 d) 720 e) 560

16 Uma PG é uma sequência de números em que cada termo, a partir do segundo, é o produto do anterior com uma determinada constante (razão). Ex.: (2, 4, 8, 16, 32,...) é uma PG de primeiro termo igual a 2 e razão 2. Ex.: (27, 9, 3, 1, 1/3, 1/9,...) é uma PG de primeiro termo igual a 27 e razão 1/3. Ex.: (4, –12, 36, –108, 324, –972,...) é uma PG de primeiro termo igual a 4 e razão igual a –3.

17 Termo geral da PG: Se tivermos 3 termos (a,b,c) em PG, afirma-se que O produto dos termos equidistantes do termo central é constante. Representação genérica de PG de 3 termos de razão q

18 (UDESC – ) O primeiro termo de uma progressão geométrica é 10, o quarto termo é 80; logo, a razão dessa progressão é: a)2 b)10 c)5 d)4 e)6

19 Pelas informações, a 1 = 10 e a 4 = 80. Podemos calcular a razão da PG partindo de a)2 b)10 c)5 d)4 e)6

20 O produto entre o segundo, o quarto e o sexto termos de uma PG (de razão ½) é 125. Qual é o primeiro termo? a) 62,5 b) 25 c) 5 d) 20 e) 40

21 Como o segundo e o sexto termo são equidistantes ao quarto termo, então (a 2, a 4, a 6 ) consiste numa PG. Assim, Se a razão é ½, ocorre: a) 62,5 b) 25 c) 5 d) 20 e) 40

22 A soma dos n primeiros termos de uma PG é dada por Ex.: Calcula a soma dos nove primeiros termos de uma PG de razão 3 e primeiro termo igual a 1.

23 Se colocarmos 3 grãos de arroz na primeira cada de um tabuleiro de xadrez, 6 na segunda, 12 na terceira, 36 na quarta e assim por diante, quantos grãos de arroz serão necessários para encher as oito primeiras casas do tabuleiro?

24 Nesse caso, teremos que considerar a PG (3, 6, 12, 24,..., a 8 ), de primeiro termo igual a 3 e razão 2. A quantidade de grãos será a soma dos termos da PG. Resposta: Precisaremos de 765 grãos para encher as oito primeiras casas do tabuleiro.

25 Quando tivermos uma PG com infinitos termos, mas seus termos estiverem se aproximando de zero (que implica –1 < q < 1), podemos dizer que a soma limite será dada por, fazendo q n = 0:

26 Guiba dirige seu simpático Chevrolet Celta quando avista uma vaca no meio da pista. Ele aciona os freios, a 60 metros de distância do animal. Então, o carro percorre 30 metros no primeiro segundo, e em cada segundo seguinte, 2/3 da distância percorrida no segundo anterior. Calcule o susto da vaca! (brincadeirinha... hehe) Qual seria a soma limite das distâncias percorridas em cada segundo? Dependendo do tempo até o carro parar, poderá haver a colisão entre o carro e o mamífero?

27 Considerando as distâncias percorridas em cada segundo, considerando infinitos segundos, teremos uma PG de primeiro termo 30 e razão 2/3. A soma desses infinitos termos será Resposta: A soma limite é 90 m (maior que a distância entre os corpos), e Guiba está em maus lençóis!

28 I know what I want I say what I want And no one can take it away. Eu sei o que quero Eu digo o que quero E ninguém pode tirar isso de mim Refrão da canção Journeyman, da banda inglesa Iron Maiden.


Carregar ppt "Prof. GUIBA 24 de outubro de 2009"

Apresentações semelhantes


Anúncios Google