A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Capítulo 3 – Movimento em Duas ou Três Dimensões 3.1 – Vetor posição e vetor velocidade objeto de nosso estudo sistema.

Apresentações semelhantes


Apresentação em tema: "Capítulo 3 – Movimento em Duas ou Três Dimensões 3.1 – Vetor posição e vetor velocidade objeto de nosso estudo sistema."— Transcrição da apresentação:

1 Capítulo 3 – Movimento em Duas ou Três Dimensões 3.1 – Vetor posição e vetor velocidade objeto de nosso estudo sistema

2 o observador sistema de referência

3 . O ponto de referência

4 O

5 O

6 O

7 O trajetória

8 objeto de nosso estudo sistema modelo: partícula

9 O

10 O Vetor posição Coordenadas cartesianas:

11 O Vetor posição

12 O t vetor posição da partícula no instante t em relação ao observador em O.

13 O Vetor deslocamento Vetor deslocamento da partícula entre os instantes t e t +Δt Componentes:

14 A C B

15 O secante à trajetória Velocidade média Componentes:

16 O t t decrescente Velocidade instantânea

17 O t t decrescente r decrescente tangente à trajetória no instante considerado

18 O tangente à trajetória

19 Em termos das componentes: Módulo do vetor velocidade: (igual à velocidade escalar)

20 3.2 – Vetor aceleração Aceleração média:Aceleração instantânea: Componentes:

21 Componentes perpendicular e paralela da aceleração: Componente perpendicular Componente paralela

22 apenas o módulo da velocidade é alterado! Componente paralela da aceleração altera o módulo da velocidade

23 Componente perpendicular da aceleração altera a direção da velocidade No limite, a aceleração torna-se perpendicular à velocidade

24 Componente perpendicular da aceleração altera a direção da velocidade No limite, a aceleração torna-se perpendicular à velocidade

25 Componente perpendicular da aceleração altera a direção da velocidade No limite, a aceleração torna-se perpendicular à velocidade

26 Aceleração normal à trajetória: velocidade escalar é constante Exemplos Componente paralela da aceleração normal no mesmo sentido da velocidade: velocidade escalar aumenta Componente paralela da aceleração normal no sentido oposto da velocidade: velocidade escalar diminui

27 3.3 – Movimento de um projétil Movimento de um corpo no campo gravitacional da Terra, desprezando os efeitos de resistência do ar, curvatura e rotação da Terra. Movimento ocorre em um plano, definido pelo vetor velocidade inicial e pela vetor aceleração da gravidade 0

28 Decomposição do movimento Movimento horizontal com velocidade constante Movimento vertical com aceleração constante (queda livre) 0

29 Demonstração: Kit LADIF 1C-02 Vídeos: Physics Demonstrations in Mechanics I.4, I.5, I.6

30 Vídeo: (a partir de 46:10 min)

31 Equações do movimento de projétil Movimento horizontal com velocidade constante Movimento vertical em queda livre 0

32 Aplicações: Distância até a origem a qualquer instante Módulo da velocidade a qualquer instante Direção e sentido da velocidade:

33 Equação da trajetória: Sabemos que: A trajetória é uma parábola (resultado obtido pela primeira vez por Galileu)

34 Altura máxima: Obtemos o tempo t 1 para alcançar a altura máxima a partir da condição Então substituimos t 1 na equação para : Note que a altura será a maior possível para

35 Alcance: Obtemos o tempo t 2 para o projétil retornar ao solo: Então substituimos t 2 na equação para : Note que o alcance será o maior possível para

36 Galileu: As amplitudes das parábolas descritas por projéteis disparados com a mesma velocidade, mas com ângulos de elevação acima e abaixo de 45 o e equidistantes de 45 o, são iguais entre si Demonstração experimental: Kit LADIF (lançador de projéteis)

37 3.4 – Movimento circular Movimento circular uniforme Movimento ao longo de uma trajetória circular com velocidade escalar constante (velocidade muda apenas de direção): aceleração será sempre perpendicular à velocidade, apontando para o centro do círculo (centrípeta) Período (T ): Tempo para uma volta completa

38 Exemplo: Y&F 3.11 Um carro possui aceleração lateral máxima de 0,96g. Se o carro se desloca a 144 km/h, qual o raio mínimo da curva que ele pode aceitar?

39 Exemplo: Órbitas dos planetas Raio médio (U.A) T translação (anos) (U.A.) Mercúrio0,390,24 267,3040,7 Vênus0,720,62 73,9438,3 Terra11 39,4739,5 Marte1,521,88 16,9839,2 Júpiter5,2011,86 1,45939,5 Saturno9,5429,46 0,434039,5 Urano19,1984,01 0,107339,5 Neptuno30,06164,79 0, ,5 Plutão39,53247,70 0, ,7

40 Movimento circular não uniforme Além da aceleração radial (centrípeta), existe também uma aceleração tangencial, que causa variações na velocidade escalar

41 3.5 – Velocidade relativa Velocidade depende do sistema de referência (referencial): conjunto de eixos e um cronômetro

42 Em 1D: x A, x B yAyA OAOA yByB OBOB A: referencial de um observador externo, parado na estrada B: referencial de um observador sentado dentro do ônibus x P/A P x P/B x B/A Derivando em relação ao tempo, obtemos:

43 Em 2D e 3D: Derivando em relação ao tempo, obtemos: yAyA OAOA xAxA zAzA yByB OBOB zBzB P Transformação de velocidades de Galileu xBxB

44 Exemplos: Y&F 3.14 e 3.15 Velocidade do avião em relação à Terra: Em que direção o piloto deve inclinar seu avião para ir do Sul para o Norte? Velocidade do avião em relação à Terra:

45 Próximas aulas: 6a. Feira 26/08: Aula de Exercícios (sala A-327) 4a. Feira 30/08: Aula Magna (sala A-343) e teste do Cap. 3

46 Avisos: Mudança na data da P2: 2a. Feira 28/11, 17h Testes (valendo até 1,0 ponto na prova): (Ausências nos testes são computadas como nota zero para o cálculo da média)


Carregar ppt "Capítulo 3 – Movimento em Duas ou Três Dimensões 3.1 – Vetor posição e vetor velocidade objeto de nosso estudo sistema."

Apresentações semelhantes


Anúncios Google