A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

EQUAÇÕES POLINOMIAIS Dorta. TEOREMA FUNDAMENTAL DA ÁLGEBRA  Uma equação polinomial de grau n, n > 0, admite pelo menos uma raiz complexa. Toda equação.

Apresentações semelhantes


Apresentação em tema: "EQUAÇÕES POLINOMIAIS Dorta. TEOREMA FUNDAMENTAL DA ÁLGEBRA  Uma equação polinomial de grau n, n > 0, admite pelo menos uma raiz complexa. Toda equação."— Transcrição da apresentação:

1 EQUAÇÕES POLINOMIAIS Dorta

2 TEOREMA FUNDAMENTAL DA ÁLGEBRA  Uma equação polinomial de grau n, n > 0, admite pelo menos uma raiz complexa. Toda equação de grau n, com n > 0, possui exatamente n raízes complexas.  Exemplo:dada a equação: A equação é do segundo grau e suas raízes são -3 e 3, ou seja, ela apresenta duas raízes.

3 TEOREMA DA DECOMPOSIÇÃO  Se gr(P) = 2, então:

4 TEOREMA DA DECOMPOSIÇÃO  EXEMPLO:

5 TEOREMA DA DECOMPOSIÇÃO  Se gr(P) = 3, então:

6 MULTIPLICIDADE DE UMA RAIZ  Toda equação polinomial de grau n, admite exatamente n raízes. Entre as n raízes podemos ter valores repetidos, isto é, um mesmo número r pode corresponder a m raízes.

7 MULTIPLICIDADE DE UMA RAIZ  Resolvendo a equação:  Isto significa que o número 3 é raiz duas vezes da equação dada. Podemos dizer então que o número 3 é raiz dupla da equação ou de multiplicidade 2.

8 MULTIPLICIDADE DE UMA RAIZ  Na equação O número 1 é raiz de multiplicidade 3, pois:

9 MULTIPLICIDADE DE UMA RAIZ  ATIVIDADE: Decomponha o polinômio em fatores de primeiro grau, sabendo que -1 é raiz dupla de P(x).

10 MULTIPLICIDADE DE UMA RAIZ  RESOLUÇÃO: Se -1 é raiz dupla de P(x), podemos escrever: e depois calcularmos as raízes de Q(x) que é um polinômio do segundo grau.

11 MULTIPLICIDADE DE UMA RAIZ

12 MULTIPLICIDADE DE UMA RAIZ  Depois de dividir utilizando o dispositivo de Briot-Ruffini, podemos afirmar que  Calculando as raízes de Q(x), temos:

13 MULTIPLICIDADE DE UMA RAIZ  Podemos então afirmar que:  Portanto,

14 MULTIPLICIDADE DE UMA RAIZ  Generalizando: O número r é raiz de multiplicidade m de P(x) se, e somente se,

15 TEOREMA DAS RAÍZES INTEIRAS  Se r é uma raiz inteira de uma equação algébrica de grau n, então r é um divisor do termo independente (quando o termo independente é não-nulo).

16 TEOREMA DAS RAÍZES INTEIRAS  EXEMPLO: Na equação as possíveis raízes inteiras são: Depois de efetuar a fatoração Fica fácil perceber que as raízes são: -1, 2 e 3.

17 TEOREMA DAS RAÍZES COMPLEXAS  Se uma equação algébrica de coeficientes reais admitir a raiz, admitirá também a raiz, conjugada da primeira, com o mesmo grau de multiplicidade.

18 TEOREMA DAS RAÍZES COMPLEXAS  Desse teorema decorre que: (i)O número de raízes complexas, não- reais, de uma equação algébrica é sempre par; (ii)Toda equação algébrica de grau ímpar tem pelo menos uma raiz real.


Carregar ppt "EQUAÇÕES POLINOMIAIS Dorta. TEOREMA FUNDAMENTAL DA ÁLGEBRA  Uma equação polinomial de grau n, n > 0, admite pelo menos uma raiz complexa. Toda equação."

Apresentações semelhantes


Anúncios Google