A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Física I Mecânica Alberto Tannús II 2010. Tipler&Mosca, 5 a Ed. Capítulo 9 - Rotações.

Apresentações semelhantes


Apresentação em tema: "Física I Mecânica Alberto Tannús II 2010. Tipler&Mosca, 5 a Ed. Capítulo 9 - Rotações."— Transcrição da apresentação:

1 Física I Mecânica Alberto Tannús II 2010

2 Tipler&Mosca, 5 a Ed. Capítulo 9 - Rotações

3 Velocidade e aceleração angular Sistemas de partículas vinculadas: cada partícula executa movimento de rotação em torno de um eixo exatamente como todas as outras partículas do sistema Sistemas de partículas vinculadas: cada partícula executa movimento de rotação em torno de um eixo exatamente como todas as outras partículas do sistema Corpo rígido!!

4 Deslocamento angular: Velocidade angular !!

5 Aceleração angular: Velocidade e aceleração tangencial de uma partícula: Aceleração centrípeta:

6 Equações de movimento rotacional (Equiv. Rotacional de Torricelli)

7 Exemplo: Um CD gira de 0 a 500 RPM em 5.5 s; Um CD gira de 0 a 500 RPM em 5.5 s; Qual é a aceleração angular? Qual é a aceleração angular? Quantas rotações ele faz em 5.5 s? Quantas rotações ele faz em 5.5 s? Que distância percorre um ponto na borda a 6 cm do centro durante os 5.5 s? Que distância percorre um ponto na borda a 6 cm do centro durante os 5.5 s?

8 S:

9 Torque Pião: Pião: Onde se aplica a força ( F i ) para fazê-lo girar? Braço de momento ( l ): distância perpendicular da linha de ação da força ao eixo de rotação! Braço de momento ( l ): distância perpendicular da linha de ação da força ao eixo de rotação!

10 Componente tangencial da força!

11 Aceleração tangencial Multiplicando a equação por r i : Somando sobre todas as partículas: Torque resultante Momento de Inércia

12 Segunda Lei de Newton de rotação:

13 Exemplo: Cálculo do Momento de Inércia Quatro partículas de massa m são conectados por barras sem massa formando um retângulo de lados 2ª e 2b cf. figura. O sistema gira em torno do eixo no plano da figura. Encontre o momento de inércia com relação a este eixo. Quatro partículas de massa m são conectados por barras sem massa formando um retângulo de lados 2ª e 2b cf. figura. O sistema gira em torno do eixo no plano da figura. Encontre o momento de inércia com relação a este eixo.

14 S:

15 Eixo paralelo Encontre o momento de inércia deste sistema para rotação em torno de um eixo que passa paralelamente ao anterior, sobre duas das partículas. Encontre o momento de inércia deste sistema para rotação em torno de um eixo que passa paralelamente ao anterior, sobre duas das partículas.

16 S: Como achei este valor?

17 Objetos contínuos Momento de Inércia é calculado por dm um elemento de massa a uma posição r e somando para todo o volume. Momento de Inércia é calculado por dm um elemento de massa a uma posição r e somando para todo o volume.

18

19 Exemplo: Calcule o Momento de Inércia de uma barra de comprimento L e massa M, com relação a um eixo perpendicular à barra e passando pela sua extremidade. Calcule o Momento de Inércia de uma barra de comprimento L e massa M, com relação a um eixo perpendicular à barra e passando pela sua extremidade.

20 S:

21

22

23

24 Teorema dos Eixos Paralelos Momento de Inércia relativamente a um eixo paralelo ao que passa no centro de massa, comparado ao M.I. relativo a este eixo Momento de Inércia relativamente a um eixo paralelo ao que passa no centro de massa, comparado ao M.I. relativo a este eixo

25

26 Aplicações da Segunda Lei Sentado numa bicicleta num apoio estacionário, com a roda traseira livre para girar, você aplica através da corrente uma força de 18 N à catraca de raio r=7 cm. Considere a roda como um anel ( I=MR 2 ) com raio R=35 cm e massa M=2.4 kg. Qual será a velocidade angular da roda depois de 5 s ? Sentado numa bicicleta num apoio estacionário, com a roda traseira livre para girar, você aplica através da corrente uma força de 18 N à catraca de raio r=7 cm. Considere a roda como um anel ( I=MR 2 ) com raio R=35 cm e massa M=2.4 kg. Qual será a velocidade angular da roda depois de 5 s ?

27 S:

28 Rotação sem deslizamento Num cilindro com uma fita enrolada, se a fita é puxada e não desliza, então a velocidade do cilindro é igual à velocidade tangencial, na borda do mesmo. Num cilindro com uma fita enrolada, se a fita é puxada e não desliza, então a velocidade do cilindro é igual à velocidade tangencial, na borda do mesmo. Diferenciando,

29 Exemplo: Um objeto de massa m é conectado a uma corda sem massa, enrolada em uma roda com momento de inércia I e raio R. A roda gira sem atrito, e a corda não desliza na sua borda. Encontre a tensão na corda e a aceleração do objeto. Um objeto de massa m é conectado a uma corda sem massa, enrolada em uma roda com momento de inércia I e raio R. A roda gira sem atrito, e a corda não desliza na sua borda. Encontre a tensão na corda e a aceleração do objeto.

30 S:

31 Condição de não deslizamento: I 0 ? I ?

32 Exemplo: Um bastão uniforme de massa M e comprimento L é vinculado numa das extremidades. Ele é mantido na horizontal, e depois liberado. Suponha que não haja atrito no pivô. Encontre: Um bastão uniforme de massa M e comprimento L é vinculado numa das extremidades. Ele é mantido na horizontal, e depois liberado. Suponha que não haja atrito no pivô. Encontre: A aceleração angular do bastão imediatamente após liberado; A aceleração angular do bastão imediatamente após liberado; A força F 0 exercida pelo pivô neste instante. A força F 0 exercida pelo pivô neste instante.

33 S:

34 Energia cinética rotacional Energia cinética de um elemento de massa m i :

35 Exemplo: Um volante utilizado para armazenar energia consiste num disco uniforme de massa 1.5 x 10 5 kg e raio 2.2 m, que gira a 3000 RPM em torno do seu centro. Um volante utilizado para armazenar energia consiste num disco uniforme de massa 1.5 x 10 5 kg e raio 2.2 m, que gira a 3000 RPM em torno do seu centro. Encontre sua energia cinética. Encontre sua energia cinética.

36 S:

37 Exemplo No bastão do exemplo anterior, que é novamente liberado do repouso na horizontal, encontre: No bastão do exemplo anterior, que é novamente liberado do repouso na horizontal, encontre: A velocidade angular do mesmo quando atinge a posição vertical; A velocidade angular do mesmo quando atinge a posição vertical; A força exercida pelo pivô neste instante; A força exercida pelo pivô neste instante; Qual é a velocidade angular inicial necessária para ele atingir a posição vertical no topo da sua oscilação? Qual é a velocidade angular inicial necessária para ele atingir a posição vertical no topo da sua oscilação?

38 S: Usando a conservação de energia (não há atrito no pivô)

39

40

41 Potência Forças que imprimem movimento de rotação realizam trabalho: Trabalho executado por um torque Taxa com que ele executa trabalho:

42

43 Objetos girantes Diferenciando: RotacionalTranslacional

44 Exemplo: Um taco atinge uma bola horizontalmente a uma altira x acima do seu centro. Encontre o valor de x para o qual a bola role sem deslizar. Expresse os resultados em termos do raio R da bola Um taco atinge uma bola horizontalmente a uma altira x acima do seu centro. Encontre o valor de x para o qual a bola role sem deslizar. Expresse os resultados em termos do raio R da bola

45 Condição de não deslizamento

46 Exemplo Uma bola de boliche de massa M e raio R é arremessada de forma que no instante em que ela toca no solo ela se move com velocidade horizontal v 0 = 5 m/s e ainda não gira. O coeficiente de atrito com o solo é K = 0.08 : Encontre: Uma bola de boliche de massa M e raio R é arremessada de forma que no instante em que ela toca no solo ela se move com velocidade horizontal v 0 = 5 m/s e ainda não gira. O coeficiente de atrito com o solo é K = 0.08 : Encontre: O tempo que a bola desliza até que a condição de não deslizamento é atingida; O tempo que a bola desliza até que a condição de não deslizamento é atingida; A distância que ela percorre deslizando. A distância que ela percorre deslizando.

47 S:

48


Carregar ppt "Física I Mecânica Alberto Tannús II 2010. Tipler&Mosca, 5 a Ed. Capítulo 9 - Rotações."

Apresentações semelhantes


Anúncios Google