A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

1 ESTATÍSTICA. 2 UDIII - Relação Entre Duas ou Mais Variáveis ESTATÍSTICA Ass 01: Regressão Simples.

Apresentações semelhantes


Apresentação em tema: "1 ESTATÍSTICA. 2 UDIII - Relação Entre Duas ou Mais Variáveis ESTATÍSTICA Ass 01: Regressão Simples."— Transcrição da apresentação:

1 1 ESTATÍSTICA

2 2 UDIII - Relação Entre Duas ou Mais Variáveis ESTATÍSTICA Ass 01: Regressão Simples

3 3 OBJETIVOS ESPECÍFICOS Calcular a reta de regressão de Y sobe X utilizando o critério dos mínimos quadrados Grafar a reta de regressão Usar a reta de regressão para fazer predições

4 4 SUMÁRIO 1- Introdução 2. Ajustamento de Uma reta de Mínimos Quadrados

5 5 1. Introdução Na prática, quase sempre interessa-nos estudar muito mais do que uma simples característica isolada de uma variável, como, por exemplo, sua média. O que queremos saber é como a variável aleatória está relacionada com outras variáveis: é isto que os estatísticos chama de regressão. Consideremos como uma safra de trigo (Y) depende da quantidade de fertilizante (X).

6 6 X Fertilizante (lb/acre) Safra (bu/acre) Y Fig 1- Relação observada entre a safra de trigo (X) e a aplicação de fertilizante (Y), em 35 lotes experimentais

7 7 1. Introdução O caso mais simples: Y está relacionada com uma única variável X por uma linha reta regressão simples de Y sobre X

8 8 Como a safra Y depende do fertilizante, é chamada variável dependente ou variável resposta. E como a aplicação do fertilizante não depende da safra, sendo, ao contrário, determinada pelo pesquisador, ela é chamada variável independente, ou fator, ou regressor X.

9 9 Exemplo: Em um estudo sobre como a safra de trigo depende do fertilizante, suponhamos que dispomos de fundos para apenas sete observações experimentais. O pesquisador fixa então X em sete níveis diferentes, fazendo apenas uma observação Y em cada caso, conforme tabela 1. a) Faça o gráfico desses pontos e ajuste a olho uma curva. b)Use esta curva para prever a safra, no caso de aplicação de 400 libras do fertilizante.

10 10 X Fertilizante (lb/acre) Y Safra (bu/acre) Tabela 1 Observações sobre Fertilizante e Safra

11 11 Fertilizante (lb/acre) Safra (bu/acre) Y Fig 2- Reta ajustada a olho aos dados da Tabela 1. X d Y SOLUÇÃOSOLUÇÃO

12 12 Observação: a) Tem especial interesse o desvio do valor efetivo Y em relação ao valor previsto : b) Procuramos manter todos esses desvios tão pequenos quanto possível ao escolher a olho a nossa reta.

13 13 2. Ajustamento de uma Reta de Mínimos Quadrados a. O Critério dos Mínimos Quadrados O nosso objetivo é ajustar algebricamente uma reta, cuja equação é da forma: a – intercepto da reta ajustada no eixo Y b – coeficiente angular da reta ajustada

14 14 Queremos manter os desvios d tão pequenos quanto possível. À primeira vista, poderíamos pensar em minimizar o desvio total d. Mas como alguns pontos estão acima da reta e outros abaixo dela, alguns desvios d serão positivos e outros negativos, fazendo com que o total d seja praticamente zero. Para superar este problema, elevamos estes desvios ao quadrado, obtendo o critério dos mínimos quadrados:

15 15 Critério dos Mínimos Quadrados Este critério permite selecionar uma única reta de ajustamento, chamada reta de mínimos quadrados

16 16 b. Fórmulas de Mínimos Quadrados

17 17 Tabela 2 Ajustamento de uma Reta de Mínimos Quadrados Dados XY xyxyx2x2 DesviosProdutos

18 18 b=0,059 a=36,4

19 19 c. Significado do Coeficiente Angular b Coeficiente Angular b = variação de Y correspondente a uma variação unitária de X

20 20 Suponhamos, por exemplo, na equação da reta ajustada, que X tenha sido aumentado de uma unidade, de 75 para 76 libras. Então: Ou seja, Y aumentou de 0,059 quando X aumentou de 1 – que é o coeficiente angular b.

21 21 X Fertilizante (lb/acre) Safra (bu/acre) Y Fig 3- A reta de mínimos quadrados ajustada aos dados da Tabela intercepto Y a=36,4 coeficiente angular b=0,059

22 22 PRATIQUE COM OS EXERCÍCIOS. BOA SORTE!


Carregar ppt "1 ESTATÍSTICA. 2 UDIII - Relação Entre Duas ou Mais Variáveis ESTATÍSTICA Ass 01: Regressão Simples."

Apresentações semelhantes


Anúncios Google