A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

GEOMETRIA -10º ANO Vectores: Definição Operações Propriedades Exemplos.

Apresentações semelhantes


Apresentação em tema: "GEOMETRIA -10º ANO Vectores: Definição Operações Propriedades Exemplos."— Transcrição da apresentação:

1 GEOMETRIA -10º ANO Vectores: Definição Operações Propriedades Exemplos

2 Noções básicas Segmentos orientados equipolentes – são segmentos com a mesma direcção, o mesmo comprimento e o mesmo sentido. Nota: [A,B] é o segmento orientado de origem em A e extremidade em B, o que é diferente de [B,A]. Exemplo: [A,B] e [T,U] ou [B,M] e [D,O] Não são exemplos válidos: [L,M] e [O,N]

3 Vector (ou vector livre) Um vector livre é um ente matemático caracterizado por uma direcção um sentido e um comprimento. Colecção de segmentos equipolentes Todos estes segmentos orientados representam o mesmo vector Carimbamos esta colecção com o nome de vector

4 EXEMPLO Os segmentos orientados [Q,R], [S,T], [A,B], [I,J], etc, representam o mesmo vector que podemos representar por qualquer um dos seus representantes do seguinte modo: ou ou por uma letra minúscula como por exemplo:

5 RESUMINDO Para ter definido um vector interessa saber: DIRECÇÃO SENTIDO COMPRIMENTO Não te esqueças: não interessa o ponto de aplicação, o vector só depende daquelas três variáveis.

6 Termos Básicos e são vectores colineares se Exemplos: Se k<0 então os vectores têm sentidos diferentes. Se k>0 então os vectores têm o mesmo sentido. Se -11 então a norma de é menor que a de. Se k=-1 os vectores são simétricos. Se k=1 os vectores são o mesmo. Vectores simétricos

7 Adição de vectores colineares Quando os vectores têm o mesmo sentido é só adicionar os seus comprimentos e manter o sentido. Se os sentidos forem diferentes o vector soma fica com um comprimento igual à diferença do comprimento dos dois vectores e o sentido é o do vector de maior norma.

8 Adição de vectores – Regra do paralelogramo Atenção!!! É necessário que os vectores estejam aplicados no mesmo ponto

9 Regra do triângulo Cuidado, para aplicar esta regra é que necessário que a extremidade de um dos vectores coincida com a origem do outro: A regra a utilizar depende do problema em causa, mas podes quase sempre aplicar as duas regras cabe-te a ti escolheres a mais adequada.

10 Exemplo de aplicação E agora que fazer para adicionar estes dois vectores??? Como nos vectores não interessa o ponto de aplicação consideramos outro representante aplicado ou na mesma origem do outro vector ou na extremidade conforme a regra que se queira aplicar!! Regra do paralelogramo

11 Exemplo de aplicação O mesmo exemplo mas com aaplicação da regra do triângulo Como nos vectores não interessa o ponto de aplicação consideramos outro representante aplicado na extremidade do outro vector!! Regra do triângulo

12 Subtracção de vectores Subtrair é o mesmo que adicionar com o simétrico, ou seja, Regra do paralelogramo

13 Soma de um ponto com um vector Ponto A Ponto B Então: ou seja Transladaram a estátua do pirata do ponto A para o ponto B, ou seja, associado ao vector

14 Vectores dos eixos coordenados No plano: O eixo Ox tem a direcção do vector O eixo Oy tem a direcção do vector No espaço ocorre o mesmo com os três eixos Ox, Oy e Oz O eixo Ox tem a direcção do vector O eixo Oy tem a direcção do vector O eixo Oz tem a direcção do vector

15 Componentes de um vector x y Como o referencial em causa é ortonormado, assim neste referencial pode-se escrever O mesmo se pode fazer com referenciais o.n. no espaço.

16 EXERCÍCIO

17 Exercício


Carregar ppt "GEOMETRIA -10º ANO Vectores: Definição Operações Propriedades Exemplos."

Apresentações semelhantes


Anúncios Google