A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

FUNÇÃO Plano Cartesiano Ortogonal de Coordenadas 2º quadrante 1º quadrante 3º quadrante4º quadrante.

Apresentações semelhantes


Apresentação em tema: "FUNÇÃO Plano Cartesiano Ortogonal de Coordenadas 2º quadrante 1º quadrante 3º quadrante4º quadrante."— Transcrição da apresentação:

1 FUNÇÃO Plano Cartesiano Ortogonal de Coordenadas 2º quadrante 1º quadrante 3º quadrante4º quadrante

2 Coordenadas de um plano cartesiano

3 Produto Cartesiano Produto cartesiano de A por B (A x B): conjunto cujos elementos são todos pares ordenados (x, y), tais que x A e y B. Exemplo: Seja A = [1, 2, 3 } e B = {5, 8} o produto cartesiano A x B será: {(1, 5), (1,8), (2, 5), (2, 8), (3, 5), (3, 8)} B x A = ?

4 Representações

5 Dado os conjuntos A = {1, 2, 3} e B = {-5, 5}, determine o produto cartesiano A x B, representando-o em diagrama de flechas e no plano cartesiano;

6 Relação Todo subconjunto do produto cartesiano A x B que satisfaz a uma condição.

7 Dado os conjuntos A = {1, 2, 3} e B = {1, 2, 4} a)o produto cartesiano A x B b) a relação R 1 de A em B, dada por R 1 = {(x, y) A x B / y = 2x} c) A relação R 2 de A em B, dada por R 2 = {(x, y) A x B / y < x} {(1, 1); (1, 2); (1, 4); (2, 1); (2, 2); (2, 4); (3, 1); (3, 2), (3; 4)} {(1, 2); (2, 4)} {(2, 1); (3, 1); (3, 2)}

8 Domínio e Imagem Domínio (D): Conjunto de todos os elementos de A que estão relacionados com elementos de B, através da relação R Imagem (Im): conjunto de todos os elementos de B que estão relacionados com elementos de A através da relação R

9 Exemplo: Sejam A = {-2, 1, 2, 3} e B = {3, 6, 12}. Determine a relação R = {(x, y) A x B / y = 3x}. Determine o Domínio e a Imagem desta relação. A x B = {(- 2, 3), (-2, 6), (- 2, 12), (1, 3), (1, 6), (1, 12), (2, -6), (2, 6), (2, 12), (3, 3), (3, 6), (3, 12)} R = {(1 3), (2, 6)} Domínio: D = {1, 2} Imagem: Im = {3, 6}

10 FUNÇÃO Toda relação f de A em B que associa todo elemento de A, através de f a um único elemento de B. Observação: Usa-se a notação f:A→B para indicar que f é função de A em B, ou seja, que “f é a expressão que transforma um elemento de A em um elemento de B.

11 f é uma função de A em B, pois todo elemento de A está associado, através de f, a um único elemento de B

12 h é uma função de M em N, pois todo elemento de M está associado, através de h, a um único elemento de N

13 g não é uma função de C em D, pois existe elemento de C que não está associado, através de g, a elemento algum de D.

14 t não é uma função de G em P, pois existe um elemento de G que está associado, através de t, a mais de um elemento a de P.


Carregar ppt "FUNÇÃO Plano Cartesiano Ortogonal de Coordenadas 2º quadrante 1º quadrante 3º quadrante4º quadrante."

Apresentações semelhantes


Anúncios Google