A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Cecília Rocha # 12001/2002 I NVESTIGAÇÃO O PERACIONAL 7ª Aula 7ª Aula Método dos Transportes e de Distribuição O método dos transportes é um dos métodos.

Apresentações semelhantes


Apresentação em tema: "Cecília Rocha # 12001/2002 I NVESTIGAÇÃO O PERACIONAL 7ª Aula 7ª Aula Método dos Transportes e de Distribuição O método dos transportes é um dos métodos."— Transcrição da apresentação:

1 Cecília Rocha # 12001/2002 I NVESTIGAÇÃO O PERACIONAL 7ª Aula 7ª Aula Método dos Transportes e de Distribuição O método dos transportes é um dos métodos de programação linear e deve o nome à sua aplicação em problemas que envolvem a optimização do transporte de bens. O método de distribuição é outro método de programação linear destinado à alocação (ou distribuição) de pessoas por tarefas, podendo-se considerar um tipo de problemas de transportes. As aplicações relativas a problemas de Transportes e Alocação envolvem inúmeras variáveis de decisão e restrições. No entanto, uma grande parte dos coeficientes das variáveis nas restrições são zero, o que permite que as simplificações introduzidas pelo método dos transportes levem a um menor volume de cálculo.

2 Cecília Rocha # 22001/2002 I NVESTIGAÇÃO O PERACIONAL 7ª Aula 7ª Aula Exercício- Exemplo Suponha que Inglaterra, França e Espanha produzem todo o trigo, cevada e aveia disponível no mundo. A procura mundial de trigo corresponde à produção de 125 milhões de acres de solo. Com o mesmo objectivo são necessários 60 milhões de acres para cevada e 75 milhões de acres para aveia. O total de solo agrícola disponível para este propósito, em Inglaterra, França e Espanha é de, respectivamente, 70 milhões, 110 milhões e 80 milhões de acres. O número de horas de trabalho necessárias para produzir 1 acre de trigo é de 18h em Inglaterra, 13 em França e 16 em Espanha. No caso do cevada são necessárias 15h em Inglaterra e 12h em França e em Espanha. Para o aveia são precisas 12h em Inglaterra, 10 em França e 16 em Espanha. O custo da hora de trabalho para produção de trigo é de 3 u.m., 2.4 u.m. e 3.3 u.m., respectivamente em Inglaterra, França e Espanha. Para a produção de cevada o custo da hora de trabalho será de 2.7 u.m., 3.0 u.m. e 2.8 u.m. em Inglaterra, França e Espanha. No caso da aveia haverá um custo da hora de trabalho de 2.3 u.m. em Inglaterra, 2.5 u.m. em França e 2.1 u.m. em Espanha. O problema é definir a melhor distribuição da produção em cada país, de forma a satisfazer as necessidades mundiais de trigo, cevada e aveia mas minimizando o custo de produção total. a) Formular este problema como um Problema de Transportes, construindo o quadro de custos e requisitos; b) Utilize uma rotina automática do SOLVER para encontrar um solução óptima para o problema; c) Utilize o método de Vogel e o método do Custo Mínimo para determinar uma solução básica admissível inicial; d) Resolva pelo Método dos Transportes.

3 Cecília Rocha # 32001/2002 I NVESTIGAÇÃO O PERACIONAL 7ª Aula (cont.) 7ª Aula (cont.) x11 18*3.0 u.m. = 54 Inglaterra França Espanha [70] [110] [80] Aveia Cevada Trigo [75] [60] [125] x12 15*2.7 u.m. = 40.5 x13 12*2.3 u.m. = 27.6 x21 13*2.4 u.m. = 31.2 x31 16*3.3 u.m. = 52.8 x32 12*2.8 u.m. = 33.6 x33 16*2.10 u.m. = 33.6 x23 10*2.5 u.m. = 25 x22 12*3.0 u.m. = 36

4 Cecília Rocha # 42001/2002 I NVESTIGAÇÃO O PERACIONAL 7ª Aula (cont.) 7ª Aula (cont.) Formulação do Problema Minimizar Z = 54 x x x x x x x x x 33 s.a.: Restriçõesde Origem Restrições de Origem x11 + x12 + x13 = 70 x21 + x22 + x23 = 110 x31 + x32 + x33 = 80 Restrições de Destino x11 + x21 + x31 = 120 x12 + x22 + x32 = 60 x13 + x23 + x33 = 75 UM O facto de todos os coeficientes das variáveis terem o valor UM e estarem dispostos da forma evidenciada neste problema, é que permite distinguir este problema dos restantes e não a sua aplicabilidade a este tipo específico de problemas. Pode ser aplicado noutras situações em que esta estrutura se repita.

5 Cecília Rocha # 52001/2002 I NVESTIGAÇÃO O PERACIONAL 7ª Aula (cont.) 7ª Aula (cont.) Modelo do Problema de Transportes Origens Destinos Genericamente, o problema de transportes refere-se à distribuição de qualquer tipo de bem, proveniente de um conjunto de fornecedores – denominados Origens – para um conjunto de clientes – denominados Destinos. is i jd j Assim, uma origem i (i = 1, 2,..., m) pode fornecer s i unidades de um dado bem por vários destinos e um dado destino j (j = 1, 2,..., n) tem uma procura de d j unidades a receber das origens. ij c i j Um pressuposto básico é que o custo de distribuição entre a origem i e o destino j é proporcional ao número de unidades transportadas, sendo c i j o custo de distribuição unitário. Quadro de Custos e Requisitos Para o exercício exemplo apresentado o Quadro de Custos e Requisitos é o seguinte: Destinos Oferta TrigoCevadaAveia Origens Inglaterra 18 * 3.0 = 5415 * 2.7 = * 2.3 = França 13 * 2.4 = * 3.0 = * 2.5 = Espanha 16 * 3.3 = * 2.8 = * 2.1 = Procura

6 Cecília Rocha # 62001/2002 7ª Aula (cont.) 7ª Aula (cont.) Modelo do Problema de Transportes Quadro de Custos e Requisitos Genericamente, o Quadro de Custos e Requisitos é o seguinte: A formulação deste tipo de problema é a seguinte: Minimizar Sujeito a: e I NVESTIGAÇÃO O PERACIONAL Destinos Oferta D1D1 D2D2...DnDn Origens S1S1 c 11 c 12...c 1n s1s1 S2S2 c 21 c 22...c 2n s2s2... SmSm c m1 c m2...c mn smsm Procurad1d1 d2d2...dndn

7 Cecília Rocha # 72001/2002 I NVESTIGAÇÃO O PERACIONAL 7ª Aula (cont.) 7ª Aula (cont.) Propriedades das Soluções nos Problemas de Transportes Solução Inteira: Para os problemas de transportes, em que a procura e oferta têm valores inteiros, todas as variáveis básicas em todas as Soluções Básicas Admissíveis (incluindo a óptima) também têm valor inteiro. Solução Admissível: É condição necessária e suficiente para que um problema de transportes tenha alguma solução admissível que: Esta propriedade pode ser analisada observando a seguinte situação Esta condição A oferta total tem de igualar a procura total implica que, nos casos em que tal não aconteça, seja necessário adoptar uma Origem Fictícia ou um Destino Fictício, consoante exista maior procura ou maior oferta, respectivamente.

8 Cecília Rocha # 82001/2002 I NVESTIGAÇÃO O PERACIONAL 7ª Aula (cont.) 7ª Aula (cont.) Propriedades das Soluções nos Problemas de Transportes – Exemplo 1 Solução Admissível: Distribuição da Produção Uma empresa constrói aviões comerciais para diversas companhias de aviação. A última etapa de produção consiste na construção dos motores a jacto e sua instalação (operação muito rápida) na fuselagem já totalmente montada. Esta empresa tem estado a trabalhar para cumprir alguns contratos já adjudicados que envolvem o fornecimento de um grande número de aviões, pelo que a produção de motores a jacto terá de ser equacionada para os próximos 4 meses, de forma a minimizar o custo de construção e armazenamento. Para satisfazer os prazos de entrega estabelecidos nos contratos, a empresa deverá ter construídos no final do 1º, 2º, 3º e 4º meses, pelo menos, 10, 25, 50 e 70 motores a jacto. As instalações onde serão construídos os motores variam conforme seja necessária a sua afectação para outras actividades, pelo que o número de motores construídos será bastante distinto. A capacidade máxima de construção mensal está indicada no quadro seguinte. Dado que existe variação no custo de construção dos motores, pode compensar que alguns motores sejam construídos nos meses anteriores à sua colocação na fuselagem, o que implicará custo de armazenamento. No entanto, é uma opção que deverá ser analisada. Os custos envolvidos são indicados no quadro seguinte. MêsProdução MínimaCapacidade MáximaCusto de Construção/unidadeCusto de Armazenamento/unidade 1 10 (10) (25) (50) (70)

9 Cecília Rocha # 92001/2002 I NVESTIGAÇÃO O PERACIONAL 7ª Aula (cont.) 7ª Aula (cont.) Preparação da resolução pelo Método dos Transportes Origem Produção de motores nos meses i = 1, 2, 3 e 4 Destino Colocação de motores na fuselagem nos meses j = 1, 2, 3 e 4 Variáveis de decisão, x ij Número de motores a construir no mês i e a instalar no mês j Parâmetros, c ij Se i j, Custo associado à construção do motor e seu eventual armazenamento Se i > j, Não se pode instalar um motor que ainda não foi construído c ij = M, para obrigar a variável correspondente a ser zero. Oferta, s i Deverá ser a mais favorável em termos de diminuição de custos. Como não se conhece esse valor vamos assumir a capacidade máxima de construção de motores em cada mês. Procura, d j Corresponde aos valores incluídos nos contratos assinados para fornecimento de aviões. No entanto, ao analisarmos a propriedade da existência de solução admissível verifica-se que o número de motores a produzir (100, no máximo) é superior ao número de motores necessários (70). Assim, será necessário adicionar um Destino Fictício ( Df ) cuja procura será igual ao excesso de oferta (30). O custo de construção e armazenamento de motores associado a este destino fictício tem de ser nulo (não existe !... )

10 Cecília Rocha # /2002 I NVESTIGAÇÃO O PERACIONAL 7ª Aula (cont.) 7ª Aula (cont.) Preparação da resolução pelo Método dos Transportes Assim, o quadro de custos e requisitos deste problema será: Destinos Oferta D1D1 D2D2 D 3 D4D4 DFDF Origens S1S *0.015= *0.015= *0.015= S2S2 M *0.015= *0.015= S3S3 MM *0.015= S4S4 MMM Procura (30)

11 Cecília Rocha # /2002 I NVESTIGAÇÃO O PERACIONAL 7ª Aula (cont.) 7ª Aula (cont.) Propriedades das Soluções nos Problemas de Transportes – Exemplo 2 Solução Admissível: Distribuição de Recursos Uma empresa é responsável pela distribuição de água a 4 concelhos (Berdoo, Los Devils, San Go e Hollyglass), numa região muito árida, pelo que é necessário comprar e transportar a água de outras regiões para abastecer estes concelhos. As fontes de fornecimento de água possíveis têm captação em 3 linhas de água – Rio Colombo, Rio Sacron e Rio Calorie. Esta empresa compra a água a esses fornecedores e revende-a à população dos 4 concelhos. É possível abastecer todos os concelhos a partir de qualquer dos rios, excepto a localidade de Hollyglass que não pode ser abastecida pelo rio Calorie. Consoante o rio que abasteça estes concelhos assim variará o custo da água, devido ao percurso a percorrer e aos acidentes geográficos a ultrapassar. Independentemente desta situação o custo da água no cliente será sempre o mesmo. A administração da empresa enfrenta agora o problema de garantir o fornecimento mínimo necessário aos 4 concelhos e distribuir toda a água disponível proveniente dos 3 rios da forma mais económica possível. Os custos e necessidades envolvidos são indicados no quadro seguinte. Custo por distância entre os rios e os concelhos Oferta de água disponível BerdooLos DevilsSan GoHollyglass Rio Colombo Rio Sacron Rio Calorie Ñ pode haver fornecimento 50 Necessidades mínimas Fornecimento pretendido Toda a que puder ser fornecida

12 Cecília Rocha # /2002 I NVESTIGAÇÃO O PERACIONAL 7ª Aula (cont.) 7ª Aula (cont.) Preparação da resolução pelo Método dos Transportes Origem, i Fornecimento de água a partir dos rios Colombo, Sacron e Calorie Destino, j Distribuição de água para os 4 concelhos Berdoo. Los Devils, San Go e Hollyglass Variáveis de decisão, x ij Quantidade de água a fornecer do rio i e a distribuir para o concelho j Parâmetros, c ij Custo associado ao transporte e distribuição de água entre os 3 rios e os 4 concelhos Dado que não existe possibilidade de fornecimento de água a Hollyglass a partir do rio Calorie, este parâmetro será M Oferta, s i É a máxima possível disponibilizada pelos rios. Procura, d j A quantidade de água a receber por cada concelho é uma variável de decisão com limite inferior (necessidades mínimas) e limite superior. Este limite superior será a quantidade pretendida, a não ser que o somatório das quantidades pretendidas exceda a água disponível após satisfação das necessidades mínimas. Neste contexto, o concelho de Hollyglass não poderá dispor de mais de 60 u.a. = ( ) – ( ). Como a procura tem de ser um valor único, temos um problema a resolver. Poderemos começar por supor que não existem necessidades mínimas. Assim, as quantidades pretendidas serão as únicas restrições em relação à quantidade de água a distribuir pelos concelhos. No entanto, teremos de fazer um ajuste ao problema dado que não cumprimos a propriedade da solução admissível, ou seja, precisaremos de uma Origem Fictícia ( Of ) que deverá garantir 50 u.a. = ( ) - ( ). O custo associado a esta Origem Fictícia será zero.

13 Cecília Rocha # /2002 I NVESTIGAÇÃO O PERACIONAL 7ª Aula (cont.) 7ª Aula (cont.) Procura, d j ( cont.) Para entrarmos em consideração com as necessidades mínimas de cada concelho, será preciso garantir que a proveniência da água não seja a Origem Fictícia. Assim: Para o concelho de San Go, não há qualquer problema dado que não tem necessidades mínimas; Para o concelho de Hollyglass, também não haverá nenhum inconveniente, dado que as suas necessidades mínimas de 10 u.a. estão garantidas (a quantidade pedida excede em 10 u.a. a oferta atribuída à Origem Fictícia); No caso do concelho de Los Devils, como a quantidade pretendida é igual às necessidades mínimas, toda a procura terá de ser satisfeita pelas origens reais, o que implica considerar um parâmetro M para esta situação na Origem Fictícia; Quanto ao concelho de Berdoo, como a Origem Fictícia tem capacidade para satisfazer a quantidade pretendida por este concelho, é preciso assegurar que as necessidades mínimas sejam satisfeitas pelos outros 3 rios. Assim, terá de ser feito o desdobramento do concelho de Berdoo em 2 fracções, uma correspondente às necessidades mínimas e outra ao excedente de água pretendido, respectivamente, com procura de 30 e 20. Será ainda indispensável garantir que as necessidades mínimas não sejam satisfeitas pela Origem Fictícia, atribuindo um parâmetro M ao respectivo custo. Destinos Oferta Berdoo Berdoo* Los DevilsSan GoHollyglass Origens Rio Colombo Rio Sacron Rio Calorie M 50 OFOF M0M00 Procura

14 Cecília Rocha # /2002 I NVESTIGAÇÃO O PERACIONAL 7ª Aula (cont.) 7ª Aula (cont.) Método Simplex aplicado ao Problema de Transportes Como os Problemas de Transportes são um dos tipos de problemas de programação linear, por isso, é possível resolvê-los pelo método Simplex dado nas 2 aulas anteriores. No entanto, dada a especificidade destes problemas, o método simplex pode ser simplificado – Método Simplex dos Transportes. Preparação do Método Após construir o quadro dos coeficientes das restrições para o método simplex, converter a função objectivo para a forma de maximização e introduzir as variáveis artificiais z1, z2,..., zm+n, obter-se-á o seguinte quadro simplex: Variáveis Básicas Equação Coeficientes Lado Direito Z...x ij...zizi z m+j... Z(0)c ij MM0 (1)... zizi (i)011sisi... z m+j (m+j)011djdj... (m+n)

15 Cecília Rocha # /2002 I NVESTIGAÇÃO O PERACIONAL 7ª Aula (cont.) 7ª Aula (cont.) Preparação do Método Falta agora realizar algumas operações algébricas antes da 1ª iteração para eliminar os coeficientes das variáveis (artificiais) básicas iniciais da linha (0) que sejam diferentes de zero. Após essas operações, a nova linha (0) terá a seguinte forma: Onde: u i u i – múltiplo da linha original (i) que tem de ser subtraído (directa ou indirectamente) à linha original (0) no método simplex, durante todas as operações que levam ao quadro actual v j v j – múltiplo da linha original (m+j) que tem de ser subtraído (directa ou indirectamente) à linha original (0) no método simplex, durante todas as operações que levam ao quadro actual Se x ij é uma variável não básica, então c ij – u i – v j é interpretada como a taxa a que Z se irá alterar à medida que x ij aumenta Variáveis Básicas Equação Coeficientes Lado Direito Z...x ij...zizi z m+j... Z(0)C ij – u i - v j M - u i M - v j

16 Cecília Rocha # /2002 I NVESTIGAÇÃO O PERACIONAL 7ª Aula (cont.) 7ª Aula (cont.) Preparação do Método Em primeiro lugar, não são necessárias variáveis artificiais porque se pode obter uma solução básica inicial com métodos auxiliares simples A linha (0) pode ser obtida sem utilizar qualquer outra linha, calculando os valores actuais de ui e vj directamente. Dado que cada variável básica tem de ter coeficiente zero na linha (0), os valores de ui e vj podem ser obtidos pela resolução de um conjunto de equações: A variável básica de saída pode ser identificada facilmente sem utilizar os coeficientes das variáveis básicas de entrada, assim como, a nova SBA pode ser detectada imediatamente sem se realizarem nenhumas operações algébricas. Deste modo podemos prescindir de quase todo o quadro do método simplex. Quadro Simplex dos Transportes Além dos dados de base (parâmetros c ij, oferta s i e procura d j ), o método simplex dos transportes só precisa da SBA inicial, dos valores actuais de u i e v j e dos valores resultantes da operação c ij – u i – v j para as variáveis não básicas x ij. Estes dados podem ser organizados num quadro denominado – Quadro Simplex dos Transportes. c ij – u i – v j = 0 para cada i e j em que x ij é variável básica

17 Cecília Rocha # /2002 I NVESTIGAÇÃO O PERACIONAL 7ª Aula (cont.) 7ª Aula (cont.) Preparação do Método F ormato do quadro simplex dos transportes Origem Iteração ? Destino Ofertau i = c ij - v j n 1 c11c12c1n s1 2 c21c22c2n s2... m cm1cm2cmn sm Procurad1d2dn Z = V j = c ij - u i c ij c ij – u i - v j x ij Variável Básica Variável Não Básica


Carregar ppt "Cecília Rocha # 12001/2002 I NVESTIGAÇÃO O PERACIONAL 7ª Aula 7ª Aula Método dos Transportes e de Distribuição O método dos transportes é um dos métodos."

Apresentações semelhantes


Anúncios Google