A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

DETERMINANTES E SISTEMAS LINEARES O que você deve saber sobre A relação entre as matrizes e os sistemas lineares remonta ao século 100 a.C. Desde então,

Apresentações semelhantes


Apresentação em tema: "DETERMINANTES E SISTEMAS LINEARES O que você deve saber sobre A relação entre as matrizes e os sistemas lineares remonta ao século 100 a.C. Desde então,"— Transcrição da apresentação:

1 DETERMINANTES E SISTEMAS LINEARES O que você deve saber sobre A relação entre as matrizes e os sistemas lineares remonta ao século 100 a.C. Desde então, a evolução do uso das matrizes e dos determinantes na resolução de sistemas deu significado relevante a essas fascinantes estruturas matemáticas.

2 É o valor real associado a toda matriz quadrada obtido a partir de uma série de operações bem definidas com seus elementos. Representa-se o determinante de uma matriz A por det A, ou por barras simples verticais, contendo todos os elementos da matriz. I. Determinante DETERMINANTES E SISTEMAS LINEARES

3 Matriz de ordem 1: o determinante é igual ao único elemento da matriz. Ex: A = [3] e det A = |3| = 3 Matriz de ordem 2: o determinante é obtido pela diferença entre o produto dos elementos da diagonal principal e o produto dos elementos da diagonal secundária. Exemplo: II. Cálculo do determinante

4 1. Copiam-se, ao lado da matriz, suas duas primeiras colunas. 2. Multiplicam-se os elementos da diagonal principal e também o das outras duas filas paralelas e à sua direita. Somam-se os resultados: 3. Multiplicam-se os elementos da diagonal secundária; o mesmo deve ser feito com as duas outras filas paralelas e à sua direita. Ao final, somam-se os resultados: II. Cálculo do determinante Considere a matriz A = DETERMINANTES E SISTEMAS LINEARES Matriz de ordem 3: o determinante é obtido pela regra de Sarrus.

5 4. Obtém-se o determinante pela diferença entre a primeira e a segunda soma: det A = ( ) – ( ) = 61 – 76 = –15 Matriz de ordem maior que 3: usa-se o teorema de Laplace, que pode ser utilizado no cálculo do determinante de matrizes cuja ordem seja maior ou igual a 2. II. Cálculo do determinante DETERMINANTES E SISTEMAS LINEARES

6 III. Matriz reduzida e cofator Matriz reduzida A ij : é obtida eliminando-se a i-ésima linha e a j-ésima coluna da matriz A. Matriz reduzida A 21 : é obtida retirando-se a segunda linha e a primeira coluna da matriz original: O cofator do elemento a ij da matriz A é o número C ij dado por: C ij = (-1) i + j. |A ij |, em que |A ij | é o determinante da matriz reduzida A ij. DETERMINANTES E SISTEMAS LINEARES Considere a matriz A =

7 O determinante de uma matriz A = (a ij ) n (n 2) é obtido multiplicando-se cada elemento de uma das filas (linha ou coluna) da matriz A pelo seu respectivo cofator e adicionando-se os resultados. Exemplo: IV. Teorema de Laplace DETERMINANTES E SISTEMAS LINEARES Escolhemos a 1 a linha para calcular os cofatores.

8 1. O determinante de uma matriz que tem uma fila (linha ou coluna) nula é igual a zero. 2. Matrizes que possuem duas filas iguais têm o determinante nulo. 3. Numa matriz A, cujo determinante é det A, quando se multiplicam os elementos de uma de suas filas por um valor real k, o determinante passará a ser k. det A. 4. Se uma matriz possui duas filas proporcionais, seu determinante é igual a zero. 5. Trocando-se a posição de duas filas em uma matriz, o determinante da nova matriz passa a ser o oposto do determinante da matriz original. 6. O determinante de uma matriz é igual ao determinante de sua transposta. V. Propriedades de determinantes DETERMINANTES E SISTEMAS LINEARES

9 Equação linear: toda aquela do tipo na qual x 1, x 2,..., x n são incógnitas; a 1, a 2,..., a n são coeficientes reais das incógnitas e b, também real, é o termo independente. Solução: conjunto ordenado de valores atribuídos às incógnitas que tornam a igualdade verdadeira. ( 1, 2,..., n ) é solução da equação linear acima desde que a a a n. n = b. Um sistema de equações lineares com m equações e n incógnitas é um conjunto de equações lineares: VI. Sistemas de equações lineares DETERMINANTES E SISTEMAS LINEARES em que a 11, a 12,..., a mn são os coeficientes reais das incógnitas x 1, x 2,..., x n e b 1, b 2,..., b m são os termos independentes.

10 É toda ênupla ordenada que torna verdadeiras simultaneamente todas as equações que compõem o sistema. Em relação às soluções, um sistema pode ser classificado da seguinte forma: Possível e determinado (SPD): solução única; Possível e indeterminado (SPI): infinitas soluções; Impossível (SI): sem solução. VII. Solução de um sistema de equações lineares DETERMINANTES E SISTEMAS LINEARES

11 1. Substituição: trata-se de isolar convenientemente uma das incógnitas em cada equação e substituí-las em outra equação do sistema, que deve se manter intacta. Por fim, origina-se uma equação equivalente em função de uma das incógnitas. Com o valor de uma das incógnitas, por substituição, obtêm-se as demais. 2. Escalonamento: o objetivo é obter um sistema equivalente, no qual, de cada equação para a seguinte, a quantidade de coeficientes nulos aumente antes do primeiro coeficiente não nulo. VIII. Resolução de sistemas DETERMINANTES E SISTEMAS LINEARES

12 Matriz aumentada associada ao sistema: VIII. Resolução de sistemas DETERMINANTES E SISTEMAS LINEARES 3. Regra de Cramer: a partir de um sistema com três equações e três incógnitas, podemos obter algumas matrizes e determinantes: Matriz de coeficientes associada ao sistema: Conjunto solução: envolve o cálculo do determinante da matriz de coeficientes associada ao sistema, denotada por D:

13 D x : é o determinante da matriz de coeficientes associada, mas com a coluna dos coeficientes de x trocada pela coluna dos termos independentes: O mesmo se faz para D y e D z, os determinantes das matrizes de coeficientes associadas, trocando-se as colunas dos coeficientes de y e z, respectivamente, pela coluna dos termos independentes: A regra de Cramer configura-se na obtenção da solução de um sistema a partir de: VIII. Resolução de sistemas DETERMINANTES E SISTEMAS LINEARES

14 se D = 0, o sistema é possível e indeterminado; ou o sistema é impossível. se D 0, o sistema é possível e determinado. IX. Discussão de um sistema linear DETERMINANTES E SISTEMAS LINEARES

15 (Fuvest-SP) João entrou na lanchonete BOG e pediu 3 hambúrgueres, 1 suco de laranja e 2 cocadas, gastando R$ 21,50. Na mesa ao lado, algumas pessoas pediram 8 hambúrgueres, 3 sucos de laranja e 5 cocadas, gastando R$ 57,00. Sabendo-se que o preço de um hambúrguer, mais o de um suco de laranja, mais o de uma cocada totalizam R$ 10,00, calcule o preço de cada um desses itens. 1 DETERMINANTES E SISTEMAS LINEARES – NO VESTIBULAR EXERC Í CIOS ESSENCIAIS RESPOSTA:

16 (Fuvest-SP) Considere o sistema de equações nas variáveis x e y, dado por: Desse modo: a) Resolva o sistema para m = 1. b) Determine todos os valores de m para os quais o sistema possui infinitas soluções. c) Determine todos os valores de m para os quais o sistema admite uma solução da forma (x, y) = (, 1), sendo um número irracional. 2 EXERC Í CIOS ESSENCIAIS RESPOSTA: DETERMINANTES E SISTEMAS LINEARES – NO VESTIBULAR

17 (Fuvest-SP) Considere o sistema linear nas variáveis x, y e z: Desse modo: a) Calcule o determinante da matriz dos coeficientes do sistema linear. b) Para que valores de a, b e c o sistema linear admite soluções não triviais? c) Calcule as soluções do sistema quando sen 2 a = 1 e cos 2 c = 5 EXERC Í CIOS ESSENCIAIS DETERMINANTES E SISTEMAS LINEARES – NO VESTIBULAR RESPOSTA:

18 (PUC-RJ) Considere o sistema linear: a) Resolva o sistema para k = 1. b) Ache o valor de x na solução do sistema para k = 0; k = 2; k = 3 e k = 5. c) Para quais valores de k o sistema não tem solução? 6 EXERC Í CIOS ESSENCIAIS DETERMINANTES E SISTEMAS LINEARES – NO VESTIBULAR RESPOSTA:

19 (Unicamp-SP) Sejam dados, a matriz a) Encontre o conjunto solução da equação det A = 0. b) Utilizando o maior valor de x que você encontrou no item a, determine o valor de m para que o sistema linear A y = b tenha infinitas soluções. 1 EXERC Í CIOS ESSENCIAIS 10 DETERMINANTES E SISTEMAS LINEARES – NO VESTIBULAR RESPOSTA:

20 (Ufal) A matriz A -1 é a inversa da matriz Se o determinante de A -1 é igual a, calcule o determinante da matriz A + A EXERC Í CIOS ESSENCIAIS 12 DETERMINANTES E SISTEMAS LINEARES – NO VESTIBULAR RESPOSTA:

21 (UFRJ) Dada a matriz A = (a ij ) 2 x 2, tal que encontre o determinante da matriz A. 1 EXERC Í CIOS ESSENCIAIS 13 RESPOSTA: DETERMINANTES E SISTEMAS LINEARES – NO VESTIBULAR

22 (Unifesp) Considere a matriz mostrada adiante, onde x varia no conjunto dos números reais. Calcule: a) o determinante da matriz A; b) o valor máximo e o valor mínimo deste determinante. 1 EXERC Í CIOS ESSENCIAIS 17 DETERMINANTES E SISTEMAS LINEARES – NO VESTIBULAR RESPOSTA:


Carregar ppt "DETERMINANTES E SISTEMAS LINEARES O que você deve saber sobre A relação entre as matrizes e os sistemas lineares remonta ao século 100 a.C. Desde então,"

Apresentações semelhantes


Anúncios Google