A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

FUNÇÕES TRIGONOMÉTRICAS

Apresentações semelhantes


Apresentação em tema: "FUNÇÕES TRIGONOMÉTRICAS"— Transcrição da apresentação:

1 FUNÇÕES TRIGONOMÉTRICAS
TRIGONOMETRIA FUNÇÕES TRIGONOMÉTRICAS

2 Seno de um arco med(CÔP) = med (AÔP) = med (AP) = a
Aplicando a definição de seno de um ângulo agudo: sen  = De modo geral, para m e n reais pertencentes ao intervalo [–1, 1]: O seno do ângulo a é a ordenada de P no eixo O eixo , das ordenadas, é também chamado eixo dos senos. Para todo arco AP do ciclo trigonométrico, com P(m, n), med(AP) =  rad,   ℝ e 0    2, temos sen  = n.

3 Simetria no estudo do seno
Para determinar o seno dos arcos dos demais quadrantes, devemos considerar a simetria do ponto P, com P  QI, e de seus simétricos em relação ao eixo das abscissas, à origem O e ao eixo das ordenadas.

4 Simetria no estudo do seno
Exemplo Nas figuras a seguir, observe o seno de alguns arcos do 1º quadrante e o seno de seus simétricos em relação aos eixos ou à origem O.

5 Simetria no estudo do seno
Exemplo

6 Simetria no estudo do seno
Exemplo

7 Simetria no estudo do seno
Exemplo Observação Os valores do seno dos arcos 0, , , , , , e 2 são chamados de valores notáveis.

8 Redução ao 1o quadrante Para , em radiano, no 1o quadrante:

9 Redução ao 1o quadrante Exemplo
Vamos determinar o seno de e o seno de seus simétricos em relação aos eixos e à origem O.

10 Variação do seno Observação
No ciclo trigonométrico, para todo   ℝ, com 0    2, temos: –1  sen   1 Exemplo Determinar os valores reais de k para que se tenha sen x – 6 = 3k. Resolução: sen x = 3k – 6 → como – 1 ≤ sen x ≤ 1, então – 1 ≤ 3k – 6 ≤ 1 → → – ≤ 3k ≤ → 5 ≤ 3k ≤ 7 → 5/3 ≤ m ≤ 7/3

11 1. Colocar em ordem crescente os valores de:
Exemplo 1. Colocar em ordem crescente os valores de: Resolução O arco de localiza-se no 1o quadrante: Logo: Sabemos que: e (valores extremos para o seno) Como ;, então:

12 Cosseno de um arco Aplicando a definição de cosseno de um ângulo agudo:

13 Cosseno de um arco De modo geral, para m e n reais pertencentes ao intervalo [–1, 1]: O cosseno do ângulo a é a abscissa de P no eixo O eixo , das abscissas, é também chamado eixo dos cossenos. Para todo arco AP do ciclo trigonométrico, com P(m, n), med(AP) = ,   ℝ e 0    2, temos cos a = m.

14 Simetria no estudo do cosseno
Para determinar o cosseno dos arcos dos demais quadrantes, devemos considerar a simetria do ponto P, com P  QI, e de seus simétricos em relação ao eixo das abscissas, à origem O e ao eixo das ordenadas.

15 Simetria no estudo do cosseno
Exemplo Observe, nas figuras a seguir, o cosseno de alguns arcos do 1o quadrante e o cosseno de seus simétricos em relação aos eixos ou à origem O. cos = cos = cos = sen = –

16 Simetria no estudo do cosseno
Exemplo

17 Simetria no estudo do cosseno
Exemplo Observação Os valores do cosseno dos arcos 0, e 2 são chamados de valores notáveis.

18 Redução ao 1o quadrante Para a, em radiano, no 1o quadrante:
cos ( – ) = –cos  cos ( + ) = –cos  cos (2 – ) = cos 

19 Redução ao 1o quadrante Exemplo
Vamos calcular o cosseno de e o cosseno de seus simétricos em relação aos eixos e à origem O. 11p 6

20 Variação do cosseno –1 ≤ cos a ≤ 1 Observação
No ciclo trigonométrico, para todo a ∈ ℝ, 0 ≤ a ≤ 2, temos: –1 ≤ cos a ≤ 1 Exemplo Determinar os valores reais de m para que se tenha cos x – 2m = 4. Resolução: cos x = 4 + 2m → como – 1 ≤ cos x ≤ 1, então – 1 ≤ 4 + 2m ≤ 1 → → – 1 – 4 ≤ 2m ≤ 1 – 4 → – 5 ≤ 2m ≤ – 3 → – 5/2 ≤ m ≤ – 3/2

21 Função seno Considerando a projeção ortogonal de P no eixo vertical, a ordenada do ponto P é o seno do arco de medida x. Logo: A função seno é a função f: ℝ → ℝ que associa cada número real x a um único sen x, ou seja, f(x) = sen x.

22 O gráfico da função seno
Vamos construir o gráfico da função f(x) = sen x com base em uma tabela de valores para x tal que x ∈ [0, 2].  x 2 sen x 1 –1

23 O gráfico da função seno
A curva obtida no intervalo [0, 2] repete-se para x > 2 e x < 0.

24 Características da função seno
É periódica, de período 2 (cada ciclo se completa em um intervalo de 2).  É limitada, ou seja, seus valores estão no intervalo [–1, 1]; seu conjunto imagem é Im = [–1, 1].  É crescente nos intervalos etc. e decrescente nos intervalos etc. 

25 Características da função seno
É positiva para x nos intervalos ]0, [, ]2, 3[ etc. e negativa para x nos intervalos ]–, 0[, ], 2[, ]3, 4[ etc.  Tem amplitude (metade da diferença entre as ordenadas máxima e mínima dos pontos do gráfico) igual a 1.

26 Função cosseno Considerando a projeção ortogonal de P no eixo horizontal, a abscissa do ponto P é o cosseno do arco de medida x. Logo: A função cosseno é a função f: ℝ → ℝ que associa cada número real x a um único cos x, ou seja, f(x) = cos x.

27 O gráfico da função cosseno
Vamos construir o gráfico da função f(x) = cos x com base em uma tabela de valores para x tal que x ∈ [0, 2].  x 2 cos x 1 –1

28 O gráfico da função cosseno
A curva obtida no intervalo [0, 2] repete-se para x > 2 e x < 0.

29 Características da função cosseno
É periódica, de período 2 (cada ciclo se completa em um intervalo de 2).  É limitada, ou seja, seus valores estão no intervalo [–1, 1], o que significa que seu conjunto imagem é Im = [–1, 1]. É crescente nos intervalos [–, 0], [, 2] etc. e decrescente nos intervalos [0, ], [2, 3] etc. É positiva nos intervalos etc. e negativa nos intervalos etc.

30 Características da função cosseno
Tem amplitude igual a 1. O gráfico da função cosseno forma uma “onda’’ semelhante à do gráfico da função seno, com deslocamento de rad para a esquerda.

31 Função tangente Vamos considerar o ponto T da intersecção entre a reta OP e a reta tangente à circunferência pelo ponto A(1, 0). A ordenada do ponto T é a tangente do arco de medida x. Logo: A função tangente é a função f: , que associa cada número real x (com exceção dos valores côngruos a e ) a um único valor tg x, ou seja, f(x) = tg x.

32 Características da função tangente
A função tangente é periódica, de período .  A função tangente não é limitada, ou seja, seu conjunto imagem é Im =]–∞, +∞[ ou ℝ.  A função tangente é crescente nos intervalos onde k ∈ ℤ.  A função tangente assume valores positivos para x nos intervalos etc. e valores negativos para x nos intervalos etc.

33 EXEMPLO 1. Determinar o domínio da função Resolução De acordo com a restrição do domínio para a função tangente, temos: Logo:

34 DOMÍNIO – IMAGEM - PERÍODO
Nas funções do tipo f(x) = a + b.sen cx e g(x) = a + b.cos cx temos que:

35 EXEMPLO Determinar domínio, imagem e período de f(x) = 2 ∙ cos .
Resolução: a = 0, b = 2 e c = 1

36 2. Obter domínio, imagem e período de f(x) = –4 + 4 ∙ sen 3x.
Resolução: a = – 4, b = 4 e c = 3

37 3. Ciência. Em uma cidade litorânea, a altura h da maré (em metro),
em função do tempo, é dada pela expressão h(t) = 2 + 0,5 ∙ cos na qual t é o tempo, medido em hora, a partir da meia-noite (t = 0 representa meia-noite). Determinar a altura máxima e a altura mínima da maré e de quanto em quanto tempo a maré faz um ciclo completo.


Carregar ppt "FUNÇÕES TRIGONOMÉTRICAS"

Apresentações semelhantes


Anúncios Google