Estrutura tridimensional de proteínas

Slides:



Advertisements
Apresentações semelhantes
Ligações Químicas Arranjos Atômicos.
Advertisements

Desenho de Fármacos baseado em estrutura de proteínas
Polipeptídeo.
Aminoácidos e peptídeos
Proteínas Profª Glaucia.
Proteínas Profª Glaucia.
Proteínas Prof. Fláudio.
Aminoácidos Essenciais e Não Essenciais
Estrutura secundária: Estrutura quaternária:
Proteínas: estrutura tridimensional e forças envolvidas
Síntese Protéica - Tradução
AMINOÁCIDOS E PROTEÍNAS
PROTEÍNAS Funções das Proteínas Estrutural: queratina (cabelo e unha).
Cinética Enzimática Prof. Dr. Henning Ulrich.
Glicina quimotripsina.
Quimotripsina glicina. Quimotripsina -cataliza hidrólise de ligações peptídicas.
Prof. Thiago Moraes Lima
Aminoácidos, peptídeos e proteínas
AMINOÁCIDOS E PROTEÍNAS Faculdade de Odontologia de Piracicaba UNICAMP
Introdução a Bioquímica: Biomoléculas
Proteínas Estrutura e Função.
Aula de Química Intensivo 31/10/2012.
twitter.com/profmagrao
Análise Conformacional de Proteínas – Física na Biologia?
Juliana Ribeiro Mariotto
As proteínas 1ª parte.
Desnaturação 4ª Parte.
Peptídeos 3ª parte.
Compostos Carbonilados II
Estrutura e função Proteínas.
Lei de Biossegurança (nº 8
Estrutura de Proteínas
Moléculas Orgânicas, Pequenas e Grandes.
BIOLOGIA MOLECULAR (BIOQUÍMICA DA CÉLULA)
A Base Molecular da Vida Prof(a): Alexsandra Ribeiro
PROTEÍNAS:.
Estrutura Quaternária
Proteínas, peptídeos e aminoácidos
2 ORGANIZAÇÃO MOLECULAR DA CÉLULA
Níveis de estruturas proteicas
Dogma central da Biologia Molecular:
BIOQUÍMICA Professor : CHARLTON JEAN.
Conhecer as proteínas - estrutura e função
PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS
Proteínas São compostos orgânicos de alto peso molecular, são formadas pelo encadeamento de aminoácidos. Representam cerca do 50 a 80% do peso seco da.
Proteínas Definição: As proteínas são macromoléculas orgânicas formadas pela seqüência de vários aminoácidos, unidos por ligações peptídicas.
AMINOÁCIDOS Prof. Nilo César do Vale Baracho 2010.
Aula 04 – Ciências dos Materiais
PROTEÍNAS.
PROTEÍNAS APLICADA AOS ALIMENTOS
Bioquímica Prof. Msc Brunno Macedo
Material gentilmente cedido por vinícius almeida.
Farmácia – UNIP Nádia Fátima Gibrim
Estrutura e Função de Proteínas
Estrutura e Função de Proteínas
PROTEÍNAS.
PROTEÍNAS Definição ComposiçãO Ocorrência IMPORTÂNCIA
Ácidos nucléicos Prof. Dr. Luis Fernando Marins
Estrutura das Proteínas
PROTEÍNAS.
PROTEÍNAS Prof. Ms. Rodrigo Alves do Carmo. 1. Elementos estruturais (colágeno, queratina); 2. Contração e movimentação (actina e miosina); 3. Fonte de.
Proteinas Introdução Amino-ácidos.
PROTEÍNAS.
Aulas Multimídias – Santa Cecília Profª Ana Gardênia.
Materiais proteicos Química e Física dos Materiais II Ano lectivo 2015/2016 Departamento de Química e Bioquímica.
Estudo das proteínas Prof. Bosco. Importância Proteínas são as moléculas biológicas mais abundantes, ocorrendo em todas as células e em todas as suas.
PROTEÍNAS.
AMINOÁCIDOS PROTEÍNAS Profa. Ivanise Correia da Silva Mota.
Lipídios Substâncias orgânicas Insolúveis em água Tipos: Glicerídios
Aulas 13 e 14 Biologia A Caderno 2 página 161.   Proteínas e vida  todos os seres vivos (inclusive os vírus, que são acelulares), tem proteínas em.
Transcrição da apresentação:

Estrutura tridimensional de proteínas Prof. Dr. Francisco Prosdocimi

Níveis de Estruturas Protéicas

A conformação espacial das proteínas As proteínas não são traços rígidos porque suas ligações químicas podem realizar rotação A maioria das ligações químicas não são planares Cada proteína tem uma estrutura específica que depende de sua estrutura primária interações químicas resultantes entre as cadeias laterais dos aminoácidos modificações pós-traducionais condições do meio em que elas estão inseridas

Temas importantes A conformação tridimensional (3D) depende da seqüência de aminoácidos A função depende da estrutura Cada proteína existe em um ou em pequeno número de formas estruturalmente estáveis As principais forças para a estabilização de estruturas são forças não-covalentes Existem padrões estruturais comuns que ajudam a organizar o entendimento  apolipoprotein A-I (PDB code 1AV1) Estrutura formada apenas por alfas-hélices

Conformação nativa Proteína dobrada em conformação funcional Dobramento espacial se dá principalmente por interações fracas – principalmente hidrofóbicas Ligações de H e iônicas são otimizadas em estruturas termodinamente mais favoráveis Estabilidade estrutural Tendência a manter a conformação nativa Ligações dissulfeto são incomuns, mas estabilizam proteínas de organismos termófilos Camada de solvatação: formada pela água envolvendo uma molécula hidrofóbica Estrutura de uma treptavidina, proteína modificada a partir da estreptavidina humana que funciona biotecnologicamente para ligar outras moléculas, como a biotina. Formada apenas por folhas beta e loops (2Y3E)

Ligações peptídicas e o ângulo omega Ligações peptídicas teem geometria rígida e planar Trans: ω = 180º

Ângulos torsionais, phi e psi Responsáveis pela curvatura na estrutura da proteína Entre o C-α e o N (do NH2) e o C (do COOH)

Omega, phi e psi

Diagrama de Ramachandran Devido a restrições espaciais, nem todos os ângulos são possíveis Impedimento estérico: dois átomos não podem ocupar o mesmo lugar Azul escuro: áreas sem sobreposição Assimetria do diagrama vem do fato de que os resíduos das proteínas são L-aminoácidos – Gly tem menos impedimentos estéricos

Estrutura secundária de proteínas Prof. Dr. Francisco Prosdocimi

Estruturas secundárias Descreve o arranjo espacial dos átomos na cadeia principal Ocorre quando os ângulos diedros (phi e psi) permanecem quase iguais durante todo um segmento da proteína Tipos Hélices α Conformações β Voltas β Indefinida (loops, coils, turns)

Alfa-hélices O arranjo mais simples que as proteínas podem assumir é um arranjo helicoidal Esqueleto polipeptídico fica enrolado em torno de um eixo imaginário Cada volta contém 3,6 resíduos Φ = -57º; ψ = -47º Grupos R se voltam para fora do eixo Em média, 25% dos aminoácidos de qualquer proteína estão em hélices α

All-alpha proteins

Estabilidade da alfa hélice A hélice é comum porque nesse modelo as posições das ligações de hidrogênio estão otimizadas Entre um H ligado ao NH2 e um O do COOH Cada ligação peptídica participa de ligação de hidrogênio, conferindo estabilidade Para isso, todos os aminoácidos precisam ter o mesmo tipo de isomeria óptica (L ou D)

Tendência dos aa’s em formar hélices O grupo lateral interfere na capacidade do aminoácido em formar hélices Volume e forma de Asp, Ser, Thr e Cys desestabilizam se estiverem muito próximos Pro e Gly dificultam a formação de hélices Relações com o vizinho também são importantes Componentes amino a carbonil formam dipolo elétrico

Restrições para a formação de hélice-α 1951 Tendência do resíduo em formar hélice Interações entre os grupos R espaçados 3-4 aa Volumes dos grupos R adjacentes Ocorrência de Pro e Gly Interações entre resíduos das extremidades com o dipolo

Conformação β (beta) Esqueleto estendido em forma de zigue-zague Folhas β paralelas e anti-paralelas Paralela: Φ = -119º; ψ = 113º Anti-par: Φ = -139º; ψ = 135º Quanto as folhas são próximas, os grupos R devem ser pequenos Teias e queratinas... Gly e Ala

Estruturas em folhas Beta Beta-propeller Beta-barril

Voltas-β A presença de resíduos em voltas ou alças invertem a direção da cadeia

Ramachandran para estruturas 2D Valores de phi e psi bem definidos

Dicroismo circular (CD) Uma assimetria estrutural em uma molécula leva a diferenças de absorção de luz polarizada A medida dessa diferença permite-nos ter uma ideia da estrutura secundária de uma proteína

Estruturas terciárias e quaternárias de proteínas Prof. Dr. Francisco Prosdocimi

Estrutura terciária (3D) Arranjo tridimensional total de todos os átomos de uma proteína Alcance mais longo e dimensão total, quando comparado com 2D Segmentos distantes na estrutura 1D podem ser atraídos por interações fracas Algumas proteínas são formadas por mais de um complexo polipeptídico (quaternária) Proteínas fibrosas e globulares

Proteínas fibrosas Queratina, colágeno, fibroína Proteínas estruturais: força e elasticidade Insolúveis em água: aa’s hidrofóbicos (Ala, Val, Leu, Ile, Met e Phe) Alfa queratina: cabelo, pelo, unhas, garras, penas, chifres, cascos e parte externa da pele Pontes dissulfeto estabilizam e dão mais resistências às cadeias

Colágeno Tecidos conectivos: tendões, cartilagens Garante resistência Hélice específica (phi = -51º; psi = 153º) Existem mais de 30 variantes do colágeno dependendo do tecido e da função

Fibroínas de seda Folhas beta Rica em A e G Alto empacotamento Ligações de H entre as cadeias B Não é elástica, mas é flexível

Proteínas globulares Diversidade estrutural reflete diversidade funcional Dobramento gera estrutura compacta Teem partes em hélices-a e partes em folhas-B Motivos estruturais Padrão identificável Envolve elementos 2D e conexões entre eles

Classificação estrutural das proteínas

Classificação estrutural das proteínas

SCOP – Famílias de proteínas

Estrutura quaternária Dímeros, homodímeros, heterodímeros Trímero, tetrâmero Oligômero, multímero

Desnaturação de proteínas Condições diferentes das celulares levam as proteínas à desnaturação Perda da estrutura leva também à perda da função Calor, pHs extremos, temperatura (?), solventes orgânicos, detergentes

Renaturação de proteínas A sequência terciária é determinada pela sequência primária, certo? As proteínas desnaturadas, portanto, podem voltar aos estados nativos através de renaturação, quando o estímulo é retirado

Enovelamento protéico Lento e gradual Diminuição da entropia até alcançar um estado estável Algumas proteínas se dobram de forma assistida pelas proteínas chaperonas

Vaca louca A doença de Creutzfeldt-Jakob, é causada por uma falha no enovelamento de proteínas Mecanismo não muito entendido, mas parece que as proteínas em forma priônica transformam as outras tbm em proteínas com esse formato

Conclusões Estrutura da proteína é estabilizada principalmente por interações fracas Estrutura secundária consiste no arranjo espacial de átomos de trechos de proteínas, definidas por ângulos phi e psi específicos A estrutura 3D das proteínas tem dois tipos básicos: proteínas fibrosas e globulares A estrutura quaternária vem da junção de várias subunidades terciárias oriundas de genes A estrutura das proteínas pode ser destruída pela desnaturação, o que mostra que a função depende da estrutura Enovelamento de proteínas envolve múltiplos mecanismos