A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

4 - Para cada uma das operações abaixo informe quais são operações internas no conjunto indicado: (a) a * b = |ab| 1/2 em Q. (b) a * b = a/b em Z. (c)

Apresentações semelhantes


Apresentação em tema: "4 - Para cada uma das operações abaixo informe quais são operações internas no conjunto indicado: (a) a * b = |ab| 1/2 em Q. (b) a * b = a/b em Z. (c)"— Transcrição da apresentação:

1 4 - Para cada uma das operações abaixo informe quais são operações internas no conjunto indicado: (a) a * b = |ab| 1/2 em Q. (b) a * b = a/b em Z. (c) (a, b)*(c, d) = (a + c, cb + d) em R 2. (d) a * b = raiz da equação x 2 – a 2 b 2 = 0 em R. (e) a * b = a log b no conjunto R*+ (reais positivos). (f) a * b = a + b em N. (g) a * b = a – b em {x Z | x > 0} (h) a * b = (a + b) 2 em Z. 5 - Para as operações indicadas a seguir em R 2 verifique se as mesmas são: I – comutativa, II – associativa, III – possui elemento neutro, IV – admite inverso (a) (a, b) * (c, d) = (ac, bd) (b) (a, b) * (c, d) = (a + c, cb + d) 6 - Considere o conjunto dos reais e a operação *, definida por a * b = (a 2 + b 2 ) 1/2. (a) Informe se tal operação é ou não associativa e/ou comutativa. (b) Verifique se a operação * tem ou não elemento neutro. Se afirmativo, qual é ele? (c) Verifique se a operação * admite ou não elemento inverso. Se afirmativo, qual é o elemento inverso de x? (d) Se apenas alguns elementos de R apresentam inverso, quais seriam esses elementos?

2 4 - (a) a * b = |ab| 1/2 em Q. Não. Por exemplo, a = 2 e b = 3. |2.3| = |6| é irracional. (b)a * b = a/b em Z. Não. Se a = 2 e b = 3, 2/3 Z (c) (a, b)*(c, d) = (a + c, cb + d) em R 2. Sim. Se a, b, c, d R, a + c e cb + d pertencem a R. (d) a * b = raiz da equação x 2 – a 2 b 2 = 0 em R. Sim. a 2.b 2 é um número positivo. Nesse caso, x = |ab| ou x = -|ab|. (e) a * b = a log b no conjunto R * + (reais positivos). Não. O logaritmo de um nº entre 0 e 1 é negativo. Portanto, o produto a.log b, pode não pertencer a R * +. (f) a * b = a + b em N. Sim. A adição é definida em N, para todo a, b de N.

3 (g) a * b = a – b em {x Z | x > 0} Não. Se a < b, a – b é negativo. Ex. 3 – 5 = -2. (h) a * b = (a + b) 2 em Z. Sim. A adição e a potenciação são definida em Z. Isto é: (1)a soma de dois números inteiros é um número inteiro, e (2) o quadrado de um número inteiro é um número inteiro. 5 - (a) (a, b) * (c, d) = (ac, bd) I - comutativa: -(-(a, b) * (c, d) = (ac, bd) = (ca, db) devido à comutatividade da multiplicação = (c, d) * (a, b). Portanto, a operação é comutativa. II – Associativa (a, b)*[(c, d)*(e, f)] = (a, b)* (ce, df) = (ace, bdf) = (ac, bd)*(e, f) = = [(a, b)*(c, d)]*(e, f). Isto comprova a associatividade.

4 III – Elemento neutro IV – INVERSO (b) (a, b) * (c, d) = (a + c, cb + d) I – Comutativa II – Associativa [(a, b)*(c, d)]*(e, f) = (a + c, cb + d)*(e, f) = [a + c + e, (cb + d).e + f] = = (a + c + e, cbe + de + f) (a, b)*[(c, d)*(e, f)] = (a, b)*(c + e, de + f) = [a + c + e, b(c + e) + de + f] = = (a + c + e, bc + be + f). Como os resultados são diferentes, a operação não é associativa. (an, bn) = (a, b) (1) an = a n = 1 e (2) bn = b n = 1. Portanto, (1, 1) e o elemento neutro. Observação. Não é necessário fazer (n, n)*(a, b) pois já foi comprovada a comutatividade. (a, b)*(n, n) = (1) aa = 1 a = 1/a e (2) bb = 1 b = 1/b. Como não existe divisão por zero, somente os elementos (x, y) com x 0 e y 0, têm inverso. (a, b)* (a, b) = (1, 1) (a + c) = (c + a), porém, cb + d é diferente de ad + b. Portanto, a operação não é comutativa. Trocando a ordem: (c, d) * (a, b) = (c + a, ad + b).

5 III – Elemento neutro (x, y) Elemento neutro à esquerda: (x, y)*(a, b) = (x + a, ya + b) = (a, b) x = 0 e y = 0. O elemento neutro à esquerda é (0, 0). Elemento neutro à direita: (a, b)*(x, y) = (a, b). Para que a igualdade aconteça: a + x = a x = 0 e bx + y = b. Como x = 0, y = b. para cada par (a, b) teríamos um neutro. Portanto, Concluindo: como não há neutro à direita, a operação não admite elemento neutro. IV - Inverso Não há o que verificar pois não tendo neutro, não tem inverso.

6 IV - INVERSO Inverso à esquerda: (x, y)*(x, y) = (0, 0) x = -x e y = -y. Concluindo: O inverso à esquerda de (x, y) é (-x, -y). Inverso à esquerda: Não existe pois não existe neutro à direita.

7 6 a


Carregar ppt "4 - Para cada uma das operações abaixo informe quais são operações internas no conjunto indicado: (a) a * b = |ab| 1/2 em Q. (b) a * b = a/b em Z. (c)"

Apresentações semelhantes


Anúncios Google